期刊文献+

盲源分离的发展及研究现状 被引量:5

下载PDF
导出
摘要 盲源分离是近十几年来才发展起来、用于从多个信号混合后的观测信号中分离出源信号的一门新技术 ,已在许多领域获得了广泛的应用。综述了盲源分离的发展及研究现状 ,提出了其未来的发展方向 。
出处 《航天电子对抗》 2004年第6期13-16,23,共5页 Aerospace Electronic Warfare
  • 相关文献

参考文献17

  • 1Parra L,Spence C. Convolutive blind source separation of nonstationary sources[J]. IEEE Trans. On Speech Audio Processing, 2000(10) :320~327. 被引量:1
  • 2Jutten C, Herault J. Space or time adaptive signal processing by neural network models [C]. In Intern.Conf. On Neural Networks for Computing. Snowbird(Utah, USA) ,1986:206~211. 被引量:1
  • 3Jutten C, Herault J. Blind separation of sources, Part Ⅰ: An adaptive algorithm based on neuromimetic architecture[J]. Signal Processing,1991,24(1) :1~10. 被引量:1
  • 4Common P, Jutten C, Herault J. Blind separation of sources, Part Ⅱ: Problems statement [J]. Signal Processing,1991,24(1) :11~20. 被引量:1
  • 5Sorouchyari E. Blind separation of sources, Part Ⅲ:stability analysis[J]. Signal Processing. 1991,24(1):21~30. 被引量:1
  • 6Common P. Independent component analysis, a new concept? [J]. Signal Processing, 1994, 36 (3): 287 ~314. 被引量:1
  • 7L Tong, R Liu, Soon VC, et al. Indeterminacy and Identifiability of Blind Identification[J]. IEEE Trans.On Circuits and Systems,1991,38(5):499~509. 被引量:1
  • 8Kiyotoshi Matsuoka, Masahiro Ohya and Mitsuru Kawamoto. A Neural Net for Blind Separation of Nonstationary Signals[J]. Neural Networks, 1995,8(3):411~419. 被引量:1
  • 9Kawamoto M, Barros AK, Mansour A, et al. Real World Blind Separation of Convolved Non-stationary Signals[C]. Proc. International Workshop on Independent Component Analysis and Signal Separation ICA'99, Aussois, France, 1999:347~ 352. 被引量:1
  • 10Becker,Hinton. A self-organizing neural network that discovers surfaces in random-dot stereograms[J]. Nature, 1992,355:161~ 163. 被引量:1

二级参考文献53

  • 1[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307. 被引量:1
  • 2[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276. 被引量:1
  • 3[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048. 被引量:1
  • 4[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185. 被引量:1
  • 5[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159. 被引量:1
  • 6[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947. 被引量:1
  • 7[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571. 被引量:1
  • 8[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025. 被引量:1
  • 9[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029. 被引量:1
  • 10[10]Cardoso J F,Souloumiac A.Blind beamfomrming for non-Gaussian signals[J].lEE Proc.-F,1993,140:362-370. 被引量:1

共引文献215

同被引文献57

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部