期刊文献+

多孔介质中天然气水合物稳定性的实验研究进展 被引量:20

Recent Advance in Study of Methane Hydrate Stability in Porous Media
下载PDF
导出
摘要 勘探表明天然气水合物多产出于细碎屑沉积物中, 其分布和赋存形式受温度、压力、水化学条件等多种物理化学因素的影响。前人的实验研究表明不同孔径尺度中的甲烷水合物稳定性有别于块状、层状水合物, 同时孔隙表面的润湿性也是影响因素之一。在综合分析前人研究成果的基础上, 系统阐述了孔隙的孔径、孔隙内表面润湿性对所含天然气水合物稳定性的影响规律, 总结了可能的内在机理; 并指出了当前应当尽快建立包括空间效应、温度、压力和组分等因素的综合天然气水合物相图, 查明含天然气水合物沉积物的孔隙结构和表界面特征, 建立天然气水合物的稳定性模型, 将有助于精确预测天然气水合物的分布和规模, 对于水合物开发和甲烷存储技术的研发也有着重要的意义。 It is proved by the long-term exploration that natural gas hydrate generally occurs within fine-grained sediments, and its stability is controlled by a number of physical, chemical and geological factors, such as temperature, pressure, pore water composition, and so on. Recent experimental studies have shown that the stability of gas hydrate in pore space with various pore structures is distinguished evidently from that of bulk one. Pore structures of host sediments significantly affect the formation and dissociation of gas hydrate, as well as wettability of pore surface. We summarize the latest experiments reported in literatures and discuss the possible influence mechanism of pore structure and wettability of inner surfaces on the stability of gas hydrates confined in pores. It is proposed that establishing an integrated thermodynamics model of methane hydrates in pore spaces with various radii, and investigating the pore structure and surface properties of hydrate-bearing sediments would advance the prediction, exploration and evaluation of gas hydrate resources. At the same time, it is of importance for methane storage and transportation.
出处 《现代地质》 CAS CSCD 北大核心 2005年第1期89-95,共7页 Geoscience
基金 国家自然科学基金项目 (40372024) 国家"863"计划课题 (2003AA611020 /02)。
关键词 天然气水合物 孔径结构 稳定性 表界面 gas hydrate pore structure stability surface and interface
  • 相关文献

参考文献45

  • 1孙春岩,黄新武,章明昱,牛滨华.天然气水合物及其地球物理识别方法的研究进展[J].现代地质,2003,17(2):195-201. 被引量:19
  • 2Henry P, Thomas M, Clennell M B. Formation of natural gas hydrates in marine sediments 2. Thermodynamic calculations of stability conditions in porous sediments [ J]. Journal Geophysical Research, 1999, 104: 23005 - 23022. 被引量:1
  • 3Benavente D, del Cura MAG, Garcia-Guinea J, et al. Role of pore structure in salt crystallisation in unsaturated porous stone[J]. Journal of Crystal Growth, 2004, 260 (3 -4): 532 - 544. 被引量:1
  • 4Uchida T, Ebinuma T, Takeya S, et al. Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrates in porous media [J]. The Journal of Physical Chemistry B, 2002, 106: 820 - 826. 被引量:1
  • 5Jirage K B, Hulteen J C, Martin C R. Nanotubule-based molecular-filtration membranes [ J]. Science, 1997, 278 (5338):655 - 658. 被引量:1
  • 6Mitchell D T, Lee S B, Trofin L, et al. Smart nanotubes for bioseparations and biocatalysis [ J]. Journal of American Chemistry Society, 2002, 124 (40): 11864 -11865. 被引量:1
  • 7Kalra A, Garde S, Hummer G. Osmotic water transport through carbon nanotube membranes [ J ]. Proceedings of the National Academy of Sciences of United State of America, 2003, 100(18): 10175 -10180. 被引量:1
  • 8Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube [ J ].Nature, 2001,414 (6860): 188 - 190. 被引量:1
  • 9Kalra A, Hummer G, Garde S. Methane partitioning and transport in hydrated carbon nanotubes [ J]. The Journal of Physical Chemistry B, 2004, 108:544 -549. 被引量:1
  • 10Huang X, Margulis C J, Berne B J. Do molecules as small as neopentane induce a hydrophobic response similar to that of large hydrophobic surfaces [ J ]. The Journal of Physical Chemistry B, 2003, 107 (42): 11742 -11748. 被引量:1

二级参考文献41

  • 1Andreassen K, Hart P, Mackay M. Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates [J]. Marine Geology, 1997, 137:25-40. 被引量:1
  • 2Sloan E D. Clathrate Hydrates of Natural Gases [M]. New York: Marcel Dekker Inc, 1990. 641. 被引量:1
  • 3Davy H M. The Bakerian lecture: on some of combinations of oxymuriatic gas and oxygen, and on the chemical relations of these principles [J]. London Phil Trans R Soc, 1811. 101. 被引量:1
  • 4Hammerschmidt E G. Formation of gas hydrate in natural gas transmission lines [J]. Int Eng Chem, 1934, 26: 851. 被引量:1
  • 5Makogon Y F. Hydrate formation in the gas-bearing beds under permafrost conditions [J]. Gazov Promst, 1965, 5: 14. 被引量:1
  • 6Kvenvolden K A. Methane hydrate-a major reservoir of carbon in shallow geosphere [J]. Chemical Geology, 1988, 71:41-51. 被引量:1
  • 7Sloan E D. Clathrate Hydrates of Natural Gases (Second Edition) [M]. New York: Marcel Dekker Inc, 1998. 被引量:1
  • 8Harvey L D, Huang Z. Evaluation of the potential impact of methane clathrate destabilization on future global warming[J]. J Geophys Res, 1995, 100: 2905. 被引量:1
  • 9Claypool G E, Kaplan I R. The origin and distribution of methane in marine sediments [A]. Kaplan I R. Natural Gases in Marine Sediments [C]. New York: Plenum Press, 1974.99-139. 被引量:1
  • 10Mathews M A, Von Huene R. Site 570 methane hydrate zone[A]. Von Huene R, Aubouin J, Arnott R J, et al. Initial Reports of the Deep Sea Drilling Project Covering Leg 84 of the Cruises of the Drilling Vessel Glomar Challenger [C]. Texas:Texas A & M University, 1985. 773-790. 被引量:1

共引文献18

同被引文献420

引证文献20

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部