期刊文献+

基于支持向量机的聚氯乙烯耐有机溶剂性能分类 被引量:1

Classification of Corrosion-Resistance of Polyvinyl Chloride to Organic Solvents Based on Support Vector Machine
下载PDF
导出
摘要 支持向量机是一类全新的小样本统计学习方法,它通过支持向量对样本进行分类或统计回归.将其应用于对非晶态聚氯乙烯的耐有机溶剂性能进行分类研究.选择74种溶剂(73种有机溶剂和水)的溶解度参数分量,即色散参数(δds)、偶极参数(δps)、氢键参数(δhs)为描述变量,采用径向基核函数,以留一法交互检验的识别率为目标函数进行支持向量分类.当选择SVM参数C=512及径向基核函数参数γ=0 5×10-3时,SVM对PVC耐蚀性能分类的模型识别率为94 59%,LOO识别率为91 89%. Support Vector Machine (SVM)for classification and regression is a powerful technique based on statistical learning in small samples. In this study, a classification problem about the corrosion resistances of non-crystalline polyvinyl chloride (PVC) to organic solvents is investigated by the SVM technique. Selecting the solubility parameters of 74(73 organic solvent and water), namely dispersion component δ_(ds), polar component δ_(ps), and hydrogen bonding component δ_(hs) as independent variables and the corrosion-resistances of PVC as dependent one, the modes of corrosion-resistances are classified by the SVM with radial basis function (RBF). When the parameter C=512 in SVM and γ=0.000 5 in RBF kernel are used, the ratio of the samples correctly identified by the SVM to total samples is 94.59% and the ratio for LOO SVM is 91.89%.
出处 《桂林工学院学报》 2004年第4期474-479,共6页 Journal of Guilin University of Technology
基金 广西自然科学基金资助项目(桂科自0236063) 广西高校百名中青年学科带头人资助计划项目(桂教人[2003]97)
关键词 支持向量机 SVM 耐蚀性 聚氯乙烯 溶解度参数 support vector machine(SVM) solubility parameter corrosion-resistances polyvinyl chloride(PVC)
  • 相关文献

参考文献13

  • 1Vapnik V. Estimation of Dependencies Based on Empirical Data[M].New York:Springer, 1982. 被引量:1
  • 2Vapnik V. Statistical Learning Theory[M]. New York:Wiley publishers science, 1998. 被引量:1
  • 3Ivanciuc O.Support vector machines for cancer diagnosis from the blood concentration of Zn, Ba, Mg, Ca, Cu and Se.Internet Electron[J].J. Mol. Des,2002,(1): 418-427. 被引量:1
  • 4Brown M P S,Grundy W N,Lin D,et al.Knowledge-based analysis of microarray gene expression data by using support vector machines[J]. Proc. Natl. Acad. Sci.,2000,97:262-267. 被引量:1
  • 5Bock J R,Gough D. A.Predicting protein protein interactions from primary structure[J].Bioinformatics,2001,17:455-460. 被引量:1
  • 6Ivanciuc O.Support vector machine identification of the aquatic toxicity mechanism of organic compounds.Internet Electron[J]. J. Mol. Des.,2002,(1):157-172. 被引量:1
  • 7Ivanciuc O.Support vector machine classification of the carcinogenic activity of polycyclic aromatic hydrocarbons[J].J. Mol. Des.,2002,(1):203-218. 被引量:1
  • 8Chang C C,Lin C J.Training nu-support vector classifiers: theory and algorithms[J].Neural Computation,2001, 13(9):2119-2147.(Implementation available in http://www.csie.ntu.edu.to/-cjlin/libsvm) 被引量:1
  • 9Boser B, GuyonI, Vapnik V.Training algorithm for optimal margin classifiers[A]. Haussler D. Proceedings of the 5thAnnual ACM Workshop on Computational Learning Theory[C].New York:ACM Press, 1992:144-152. 被引量:1
  • 10Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines [A]. Principe J, Gile L, Morgan N, et al.Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing [C]. IEEE, 1997:276-285. 被引量:1

同被引文献10

  • 1Rayne S.Development of a multiple-class high-resolution gas chromatographic relative retention time model for halogenated environmental contaminants[J]. Anal. Chem. 2003, 75:1049-1057. 被引量:1
  • 2D Needham M,Adams K C,C Jurs P.Quantitative structure-retention relationship studies of polychlorinated dibenzodioxins on gas chromatographic stationary phases of varying polarity[J].Anal. Chim. Acta. 1992, 258:183-198. 被引量:1
  • 3Vapnik V.Estimation of dependencies based on empirical data[M].New York: Springer,1982. 被引量:1
  • 4Vapnik V.The nature of statistical learning theory[M]. New York: Springer-Verlag,1995. 被引量:1
  • 5Vapnik V.Statistical Learning Theory[M]. New York: Wiley publishers science,1998. 被引量:1
  • 6Chang C C, Lin C J. Training nu-support vector classifiers:Theory and algorithms[J]. Neural Computation, 2001, 13(9): 2119-2147. (Implementation available in http://www.csie.ntu.edu.tw/~cjlin/libsvm) 被引量:1
  • 7Lee J H,Lin C J.Automatic model selection for support vector machines[DB/OL]. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf,2000. 被引量:1
  • 8Liu H X,Zhang R S,Yao X J,et al.QSAR study of ethyl 2-[(3-Methyl-2,5-dioxo(3-pyrrolinyl))amino]-4- (trifluoromethyl) pyrimidine-5-carboxylate: An inhibitor of AP-1 and NF-KB mediated gene expression based on support vector machines[J].J.Chem.Inf.Comput.Sci.,2003, 43:1288-1296. 被引量:1
  • 9Liu S S,Liu H L,Yin C S,et al.VSMP: A novel variable selection and modeling method based on the prediction[J].J Chem.Inf.Comput.Sci.,2003, 43:964-969. 被引量:1
  • 10岳瑞生.《关于就某些持久性有机污染物采取国际行动的斯德哥尔摩公约》及其谈判背景[J].世界环境,2001(1):24-28. 被引量:39

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部