期刊文献+

背景估计与运动目标检测跟踪 被引量:14

Background Estimation and Moving Target Detection
下载PDF
导出
摘要 基于视频的自动目标检测和跟踪是计算机视觉中一个重要的研究领域,特别是基于视频的智能车辆监控系统中的运动车辆的检测和跟踪。提出一种自适应的背景估计方法来实时获得当前背景图像,从而分割出运动物体。为了准确地定位运动车辆的区域,采用差分图像投影和边缘投影相结合的方法来定位车体,同时利用双向加权联合图匹配方法对运动车辆区域进行跟踪,即将对运动车辆区域跟踪问题转化为搜索具有最大权的联合图的问题。该算法不仅能实时地定位和跟踪直道上运动的车辆,同时也能实时地定位和跟踪弯道上运动的车辆,从实验结果看,提出的背景更新算法简单,并且运动车辆区域的定位具有很好的鲁棒性,从统计的检测率和运行时间来看,该算法具有很好的检测效果,同时也能满足基于视频的智能交通监控系统的需要。 A vision-based moving object detection and tracking in video streams is an important research in computer vision, especially, the moving vehicles in ITS play an important role. The aim of motion detection is to get the changed region from the background image in video sequences, and it is also very important for target classification and tracking motion object. In this paper, a self-adaptive background subtraction method for vehicle segmentation was proposed. In order to locate vehicle accurately, we combined the projection of difference image with the projection of edge to locate vehicle. This proposed method could locate vehicle well. We formed an association graph between the regions from the previous frame and the regions from the current frame, so we modeled the tracking problem as a problem of finding maximal weight association graph. Very promising experimental results are provided using real-time video sequences, experimental results have confirmed that the proposed method is efficient and reliable, and its computer cost can also satisfy the traffic surveillance systems.
出处 《计算技术与自动化》 2004年第4期51-54,共4页 Computing Technology and Automation
关键词 实时 跟踪 背景估计 视频 图匹配 背景图像 计算机视觉 车辆 运动车 出运 motion detection update background object segmentation region location weight bipartite association graph vehicle tracking
  • 相关文献

参考文献5

  • 1Stauffer C, Grimson W. Adaptive background mixture models for real- time tracking[C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins, Colorado,1999, vol. 2, 246 ~252. 被引量:1
  • 2D. Koller, K. Daniilidis. Model - based Object Tracking in Monocular Image Sequences of Road Traffic Scenes[ J ]. International Journal of Computer Vision, 10 1993. 257~181. 被引量:1
  • 3刘直芳,游志胜,张继平,曹刚,徐欣.利用人眼感知视觉模型的车型动态定位[J].控制与决策,2003,18(5):619-622. 被引量:4
  • 4汪亚明,黄文清,周海英.动态图像序列中的运动目标检测[J].计算机测量与控制,2003,11(8):564-565. 被引量:19
  • 5Surendra G. Detection and classification of vehicles[J]. IEEE Trans. On intelligent transportation systems, vol. 3, 2002, 37~47. 被引量:1

二级参考文献9

  • 1KOLLER D, WEB J, HUANG T, et al. Towards robust automatic traffic scene analysis in real time [A]. In Proceedings of the 33rd IEEE Conference on Decision and Control (Cat. No. 94CH3460-3) [C]. IEEE. 1994. 被引量:1
  • 2ELGAMMAL A, HARWOOD D, DAVIS L. Non- parametric model for background subtraction [A]. In IEEE ICCV '99 FRAME - RATE WORKSHOP [C]. 1999. 被引量:1
  • 3STAUFFER C, GRIMSON W. Adaptive background mixturemodels for real - time tracking [A]. In Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149) [C]. IEEE Comput. Soc.1999. 被引量:1
  • 4Zikuan Chen,Mohammad A Karim. Locating target at high speed using image decimation decomposition processing [J ]. Pattern Recognition, 2001,34 (3) : 685-694. 被引量:1
  • 5Jiangping Fan,Walid G Aref.An improved automatic isotropic color edge detection technique[J].Pattern Recognition Letters,2001,22(6):1419—1429. 被引量:1
  • 6Cheng H D,Jiang X H.Color image segmentation:Advances and prospects[J].Pattern Recognition,2001,34(9):2259-2281. 被引量:1
  • 7贾云得.机器视觉[M].北京:科学出版社,2002.. 被引量:32
  • 8孙秋冬.基于视觉模型的自适应图象边缘检测[J].上海第二工业大学学报,1998,15(2):83-90. 被引量:5
  • 9汪亚明.基于计算机视觉的衣服尺寸测量[J].计算机测量与控制,2002,10(3):158-159. 被引量:11

共引文献20

同被引文献95

引证文献14

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部