摘要
研究了二阶非线性泛函微分方程(n(t)(y'(t))σ)+q(t)f(y(τ(t))g(y'(t))=0,t≥t0解的振动性 与渐近性,其中σ是一个偶数与奇数的正商时,所得的结果是全新的.
Oscillatory and asymptotic behavior of solutions of the second order nonlinear functional differential equation(a(t)(y'(t)σ)+q(t)f(y(τ(t))g(y'(t))=0,t≥t0 are considered, where σ is a positive quotient ofeven over odd integers. The results obtained are new.
出处
《湖南城市学院学报(自然科学版)》
CAS
2004年第4期44-45,49,共3页
Journal of Hunan City University:Natural Science
关键词
振动性
渐近性
非线性泛函微分方程
oscillation
asymptotic behavior
nonlinear functional differential equation