期刊文献+

含裂纹体结构分析中的再造核质点法(RKPM) 被引量:1

A structural analysis with crack problems by Reproducing Kernel Particle Methods
下载PDF
导出
摘要 应用再造核质点法(RKPM)进行了结构裂纹计算问题的研究。将不连续处理技术-可视准则和衍射方法应用于RKPM来模拟裂纹附近场函数,实现二维和三维裂纹体的分析。避免了有限元方法中裂纹附近复杂的网格剖分工作。应用面向对象技术在计算程序中实现了二维和三维裂纹体的应力场计算分析,并且将结构离散工作和裂缝网格构造工作分离,从而提高计算效率。简单的算例表明应用RKPM方法在二维和三维含裂纹结构计算是有效的。 This paper is aimed at presenting a Reproducing Kernel Particle Method (RKPM) for structure analysis on a body with cracks modeled. Discontinuous approximations, visibility criterion and diffraction method are applied to the Reproducing Kernel Particle Method (RKPM) for construction of functions around the crack of a discontinuity in this paper. And the method allows for modeling of arbitrarily cracks without any fine meshing work around all cracks as in FEM. An Object-Oriented computation program has been achieved for stress analysis in 2D and 3D filed with crack modeled. In program design, the operation of solid body discretization is not depending on the construction process of crack surface mesh. The paper concludes with two simple examples demonstrating the computational efficiency of RKPM for discontinuous problems in 2D and 3D filed.
出处 《计算力学学报》 CAS CSCD 北大核心 2004年第6期734-739,共6页 Chinese Journal of Computational Mechanics
基金 清华大学985基金(201010-004) 中国博士后科研基金(2001-14)资助项目.
关键词 结构分析 无网格方法 有限元方法 非连续性 裂缝 structural analysis meshless methods finite element methods discontinuity crack
  • 相关文献

参考文献23

  • 1Monaghan J J. An introduction to SPH[J]. Computer Physics Communications, 1988,48 (1): 89-96. 被引量:1
  • 2Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements[J]. Computational Mechanics, 1992,10(4): 307-18. 被引量:1
  • 3Duarte C A M, Oden J T. H-p clouds-an h-p meshless method [J]. Numerical Methods for Partial Dierential Equations, 1996,12(7): 673-705. 被引量:1
  • 4Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [ J ]. International Journal for Numerical Methods in Engineering, 1994, 37 ( 3 ):229-56. 被引量:1
  • 5Atluri S N, Zhu T. A new meshless local PetrovGalerkin ( MLPG ) approach in computational mechanics [J]. Computational Mechanics, 1998, 22(2):117-27. 被引量:1
  • 6Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Engineering, 1995, 20 ( 6 ):1081-106. 被引量:1
  • 7Liu W K, Jun S, Li S, et al. Reproducing kernel particle methods for structural dynamics [J].International Journal for Numerical Methods in Engineering, 1995,38(13): 1655-79. 被引量:1
  • 8Liu W K, Hao W, Chen Y, et al. Mutiresolution reproducing kernel methods [J]. Computational Mechanics, 1997,20(4): 295-309. 被引量:1
  • 9Liu W K, Chen Y, Chang C T,et al. Advances in multiple scale kernel particle methods [J].Computational Mechanics, 1996,18 ( 2 ): 73-111. 被引量:1
  • 10Hulbert, Gregory M. Application of Reproducing Kernel Particle Methods in electromagnetics [J].Computer Methods in Applied Mechanics and Engineering, 1996,139: 229-235. 被引量:1

同被引文献23

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部