期刊文献+

Global Rank Axioms for Poset Matroids 被引量:3

Global Rank Axioms for Poset Matroids
原文传递
导出
摘要 An excellent introduction to the topic of poset matroids is due to Barnabei, Nicoletti and Pezzoli. In this paper, we investigate the rank axioms for poset matroids; thereby we can characterize poset matroids in a “global” version and a “pseudo-global” version. Some corresponding properties of combinatorial schemes are also obtained. An excellent introduction to the topic of poset matroids is due to Barnabei, Nicoletti and Pezzoli. In this paper, we investigate the rank axioms for poset matroids; thereby we can characterize poset matroids in a “global” version and a “pseudo-global” version. Some corresponding properties of combinatorial schemes are also obtained.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第3期507-514,共8页 数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (Granted No.103710438) Education Ministry of China (Granted No.02139)
关键词 Poset matroids Rank function Combinatorial scheme Distributive lattice Poset matroids Rank function Combinatorial scheme Distributive lattice
  • 相关文献

参考文献7

  • 1Barnabei, M., Nicoletti, G., Pezzoli, L.: Matroids on partially ordered sets. Adv. in Appl. Math., 21(1),78-112 (1998). 被引量:1
  • 2Welsh, D. J. A.: Matroid Theory, London, Academic Press, 1976. 被引量:1
  • 3Birkhoff, G. D.: Lattice Theory. 3rd Ed., Colloquium Publication 25, American Mathematical Society,Providence, RI, 1967. 被引量:1
  • 4Li, S. C.: Rank function for poset matroids. Bulletin of the Institute of Mathematics Academia Sinica,31(4), 257-272 (2003). 被引量:1
  • 5Li,S.C., Li, W. D.: Bases and circuits for poset matroids. J. of Lanzhou University, 37(6), 12-16 (2001). 被引量:1
  • 6Rota. G. C.:Report on the present state of combinatorics, Discrte Math., 153(1-3), 289-303 (1996). 被引量:1
  • 7Barnabei, M., Nicoletti, G.Pezzoli, L.: Symmetric property for poset matroids. Adv. Math., 102(2),230-239 (1993). 被引量:1

同被引文献18

  • 1LIShuchao,FENGYanqin.CLOSURE AXIOMS FOR POSET MATROIDS[J].Journal of Systems Science & Complexity,2004,17(3):377-386. 被引量:2
  • 2刘桂真 陈庆华.拟阵[M].长沙:国防科技大学出版社,1995.. 被引量:13
  • 3赖虹建(LaiHongjian).拟阵论(Matroid Theory)[M].北京:高等教育出版社(Beijing:Higher Education Press),2002.. 被引量:1
  • 4Barnabei M, Nicoletti G, Pezzoli L. Matroids on partially ordered set[J]. Adv in Appl Math, 1998,21(1):78-112. 被引量:1
  • 5Barnabei M, Nicoletti G, Pezzoli L. The symmetric exchange property for poset matroids[J]. Adv in Math, 1993,102:230-239. 被引量:1
  • 6Korte B, Lovasz L, Schrader R. Greedoids[M]. Berlin Heidelberg: Springer-Verlag,1991. 被引量:1
  • 7Li Shuchao, Feng Yanqing. Rank function for poset matroids[J]. Bulletin of Institute of Mathetics Academia Sinic,2003,54:257-272. 被引量:1
  • 8Davery B A, Priestley H A. Introduction to Lattice and Order[M]. Cambridge: Cambridge University Press,1990. 被引量:1
  • 9Mao Hua, Liu Sanyang. The direct sum, union and intersection of poset martoids[J]. Soochow J Math, 2002,28(4):247-355. 被引量:1
  • 10刘桂真 陈庆华(LiuGuizhen ChenQinghua).拟阵(Matroid)[M].长沙:国防科技大学出版社(Changsh:National University of Defense Technology Press),1995.. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部