期刊文献+

CLOSURE AXIOMS FOR POSET MATROIDS 被引量:2

CLOSURE AXIOMS FOR POSET MATROIDS
原文传递
导出
摘要 An excellent introduction to the topic of poset matroids is due to M, Barnabei, G, Nicoletti and L. Pezzoli. In this paper, we extensively study the closure operators of poset matroids and obtain the closure axioms for poset matroids; thereby we can characterize poset matroids in terms of the closure axioms. Some corresponding properties of combinatorial schemes are also obtained.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2004年第3期377-386,共10页 系统科学与复杂性学报(英文版)
基金 This research is supported partially by Education Ministry of China (No. 02139) by National Science Foundation of China(No. 10471038).
关键词 partially ordered set matrqid combinatorial scheme closure operator 部分有序集 矩阵胚 组合方案 关闭算子
  • 相关文献

参考文献10

  • 1M. Barnabei, G. Nicoletti, and L. Pezzoli, Symmetric property for poset matroids, Adv Math.,1993, 102: 230-239. 被引量:1
  • 2M. Barnabei, G. Nicoletti, and L. Pezzoli, Matroids on partially ordered sets, Adv in Appl Math.1998, 21: 78-112. 被引量:1
  • 3Shuclaa-o-Li and Yanqin Feng, Global rank axioms of poset matroids, Accepted by Acta Mathematical Sinica, 2001. 被引量:1
  • 4Shuchao Li and Yanqin Feng, New results on global rank axioms of poset matroids, Accepted by Acta Mathematical Sinica, 2002. 被引量:1
  • 5Shuchao Li, Rank function for poset matroids, Bulletin of the Institute of Mathematics Academia Sinica, 2003, 31(4): 257-272. 被引量:1
  • 6G.D. Birkhoff, Lattice Theory, 3rd Ed., Colloquium Publication 25, American Mathematical Society, Providence, RI, 1967. 被引量:1
  • 7G,-C. Rota, Report on present state of combinatorics, Discrete Math., 1996, 153: 289-303. 被引量:1
  • 8G.Z. Liu and Q:H Chen, Matroid Theory, National Defence and Technology University Press, 1994(in Chinese). 被引量:1
  • 9D.J.A Welsh, Matroid Theory, Academic Press, London, 1976. 被引量:1
  • 10L. Pezzoli, On D-complementation, Adv. in Math., 1984, 51: 226-239. 被引量:1

同被引文献12

  • 1ShuChaoLI,YanQinFENG.Global Rank Axioms for Poset Matroids[J].Acta Mathematica Sinica,English Series,2004,20(3):507-514. 被引量:3
  • 2赖虹建(LaiHongjian).拟阵论(Matroid Theory)[M].北京:高等教育出版社(Beijing:Higher Education Press),2002.. 被引量:1
  • 3Barnabei M, Nicoletti G, Pezzoli L. Matroids on partially ordered set[J]. Adv in Appl Math, 1998,21(1):78-112. 被引量:1
  • 4Barnabei M, Nicoletti G, Pezzoli L. The symmetric exchange property for poset matroids[J]. Adv in Math, 1993,102:230-239. 被引量:1
  • 5Korte B, Lovasz L, Schrader R. Greedoids[M]. Berlin Heidelberg: Springer-Verlag,1991. 被引量:1
  • 6Li Shuchao, Feng Yanqing. Rank function for poset matroids[J]. Bulletin of Institute of Mathetics Academia Sinic,2003,54:257-272. 被引量:1
  • 7Davery B A, Priestley H A. Introduction to Lattice and Order[M]. Cambridge: Cambridge University Press,1990. 被引量:1
  • 8Mao Hua, Liu Sanyang. The direct sum, union and intersection of poset martoids[J]. Soochow J Math, 2002,28(4):247-355. 被引量:1
  • 9刘桂真 陈庆华(LiuGuizhen ChenQinghua).拟阵(Matroid)[M].长沙:国防科技大学出版社(Changsh:National University of Defense Technology Press),1995.. 被引量:1
  • 10李书超,李维德.偏序集拟阵的基和圈[J].兰州大学学报(自然科学版),2001,37(6):12-16. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部