期刊文献+

二维Laplace方程边界元方法的误差估计 被引量:1

The Error Estimates for the Laplace Equation in R^2 by Boundary Element Method
下载PDF
导出
摘要 本文利用边界元方法来解决R^2中的Laplace问题,先给出该问题相应积分方程的误差估计,然后利用此及其近似解的构造,导出解及其导数的渐近误差估计. In this paper, we try to solve the Laplace problem in R^2 by the BEM. We have given the error estimate of the solution of the integral equation corresponding to the problem by the general method of the BEM, and we have worked out the asymptotic error estimates for the problem by the result
作者 杜其奎
出处 《淮北煤师院学报(自然科学版)》 1993年第4期8-15,共8页 Journal of Huaibei Teachers College(Natural Sciences Edition)
关键词 边界元法 L方程 误差估计 boundary element method (BEM):Laplace equation : error estimates.
  • 相关文献

参考文献2

二级参考文献3

  • 1J. C. Nedelec. Integral equations with non integrable kernels[J] 1982,Integral Equations and Operator Theory(1):562~572 被引量:1
  • 2Prof. Dr. G. C. Hsiao,Dr. P. Kopp,Prof. Dr. W. L. Wendland. A Galerkin collocation method for some integral equations of the first kind[J] 1980,Computing(2):89~130 被引量:1
  • 3Gerard R. Richter. Superconvergence of piecewise polynomial Galerkin approximations, for Fredholm integral equations of the second kind[J] 1978,Numerische Mathematik(1):63~70 被引量:1

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部