期刊文献+

混合边界条件的非线性反应扩散方程解的Blow-up问题

On Blow-up Problem of Solutions for a Class of Nonlinear ReacationDiffusion Equations with Mixed Boundary Conditions
下载PDF
导出
摘要  利用极大值原理研究一类非线性反应扩散方程在混合边界条件下解的Blow-up问题,给出了整体解不存在的一个定理,并得到了Blow-up时间T*的上界. By maximum principle, the problem on blow-up of the solutions for a class of nonlinear reaction diffusion equations with mixed boundary conditions is dealt with. A nonexistence theorem of global solutions and the bound of the \!Blow-up time\' \%T\%~* are obtained.
出处 《华北工学院学报》 2004年第5期313-315,共3页 Journal of North China Institute of Technology
关键词 BLOW-UP 非线性反应扩散方程 混合边界 上界 下解 整体解 定理 问题 条件 极大值原理 nonlinear reaction-diffusion equations blow-up maximum principle
  • 相关文献

参考文献8

  • 1Fujita H. On the blowing up of solutions to the Cauchy problem for[J]. J. Faculty Science, U. of Tokyo. , 1996, 13: 109-124. 被引量:1
  • 2Sperb R P. Growth estimates in reaction-diffusion parabolic equations[J]. Comm. Pure. App. Math. , 1963, 16:305-330. 被引量:1
  • 3Levine H A, Payne L E. Nonexistence theorems for the heat equation with nonlinear boundary condition and for the poros medium equation backward in time[J]. J. Differential Equation, 1974, 16: 319-334. 被引量:1
  • 4Walter W. On existence and nonexistence in the large of solutions of parabolic differential equation with a nonlinear boundary condition[J]. SIAMJ. Math. Anal., 1975, 6: 85-90. 被引量:1
  • 5Wang M X, Wu Y H. Global existence and blow-up problem for quasilinear parabolic equations with nonlinear boundary conditions[J]. SIAMJ. Math. Anal., 1993, 24(6): 1515-1521. 被引量:1
  • 6Yin H M. Blow-up versus global solvabiltry for a class of nonlinear parabolic.equation[J]. Nonlinear Anal. TMA. , 1994, 23(7): 911-934. 被引量:1
  • 7Du Y H, Huang Q G. Blow-up solutions for a class of semilinear elliptic and parabolic equations[J]. SIAMJ. Math. Anal., 31(1): 1-18. 被引量:1
  • 8Sperv R P. Maximum principles and their applications[M]. Academic press. New York, 1981, 20-30. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部