期刊文献+

超前进位加法器的延迟时间公式与优化设计 被引量:6

Delay Time Formulae and Optimizing Design of Carry Lookahead Adders
下载PDF
导出
摘要 从门电路标准延迟模型出发 ,在超前进位加法器单元电路优化的基础上 ,给出了超前进位加法器延迟时间公式 ,阐明了公式中各项的意义 .推导出模块延迟时间公式、最大级联数 Km( max) 、最优分组方案等重要结果 .并与功耗、面积约束一起 ,归纳出超前进位加法器的优化设计规则 . The delay time formulae of the carry lookahead adders(CLA) were given based on the standard delayed model of logic gate and optimal circuit unit. The meaning of all terms in the formulae was expounded. The formulae were verified by a three slloreys sixty-four bit CLA. The delay time formulae of the module of CLA,the maximum cascade number and the optimal layout of grouping,the above valuable results were deducted. The optimal design rule of CLA was inducted from power dissipation and area constraint,reflected by maximum fanout and speed constraint. With its regular structure,32-bit CLA designed according above rule had a fanout no more than 7 and a critical path logic depth of 6.
出处 《武汉理工大学学报(交通科学与工程版)》 北大核心 2004年第4期585-588,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家民委科研基金项目资助 (批准号 :990 10 1)
关键词 超前进位加法器 延迟时间公式 设计规则 优化设计 carry lookahead adder delay time formula design rule optimizing design
  • 相关文献

参考文献5

二级参考文献21

  • 1P M Kogge, et al. A parallel algorithm for the efficient solution of agenera class of recurrence equations [J]. IEEE Trans. on Computers,1973, C-22: 786 - 793. 被引量:1
  • 2Brent,et al.A Regular Layout for Parallel Adders [J]. IEEE Trans.on Computers, 1982, C31 (3) :260-264. 被引量:1
  • 3S Knowles. A family of adders [ A ]. 1999, Proc. 14th IEEE Symp. On Computer Arithmetic [C]. Adelaide, Australia. 1999.277 - 284. 被引量:1
  • 4T P Kelliher, et al. ELM-A fast addition algorithm discovered by a program [J]. IEEE Transactions on Computers, 1992,41.1181 - 1184. 被引量:1
  • 5C Nagendra, et al. Area-time-power tradeoffs in parallel adders [J].IEEE Transactions on Circuits and Systems, 1996,43(10) :689 - 702. 被引量:1
  • 6W-H Yeh. On the study of logarithmic time parallel adders [ A] .IEEE Workshop on Signal Processing Systems [ C ]. Lafayette, LA, USA.2000.459 - 466. 被引量:1
  • 7V G Oklobbdzija. VLSI Arithmetic [ DB/OL]. http://www.ece. ucdavis.edu/acsel. 被引量:1
  • 8I Koren. Computer Arithmetic Algorithms [ M ]. Prentice hall, New Jersey, USA. 1993.84 - 86. 被引量:1
  • 9H Ling. High-speed binary adder [J].IBM J. RES. DEVELOP. 1981,25(3) : 156- 165. 被引量:1
  • 10M Suzuki, N Ohkubo,T Shinbo. A 1.5-ns 32-b CMOS ALU in double pass-transistor logic [J]. IE.EE Journal of Solid-State Circuits, 1993,28(11):1145- 1150. 被引量:1

共引文献13

同被引文献25

  • 1王礼平,王观凤.顶层进位级联CLA的算法与设计规则[J].华中科技大学学报(自然科学版),2004,32(7):88-91. 被引量:6
  • 2王礼平,王观凤.超前进位加法器基本单元电路及其组合方案的优化设计[J].中南民族大学学报(自然科学版),2004,23(2):41-45. 被引量:5
  • 3王礼平,王观凤.超前进位加法器混合模块延迟公式及优化序列[J].微电子学与计算机,2005,22(1):152-155. 被引量:4
  • 4Huong Yen-Mou, Kuo James B. A high-speed conditional carry select(CCS)adder circuit with a Successively incremented carry number block(SICNB) structure for low-voltage VLSI implementation[J]. IEEE Transactions on Circuits and systems, 2000,47 (10) : 1074-1079. 被引量:1
  • 5Knowles S. A family of adders[C]//Proc. 14eh IEEE Symp. On Computer Arithmetic. Adelaide, Australia, 1999 : 277-284. 被引量:1
  • 6Wang 12. A 1.25GHz 32bit tree-structured carry lookahead adder[C]//IEEE Intl. Synop. On Circuits and Systems. Sydney, Australia, 2001(4) : 80-83. 被引量:1
  • 7Wang Yuke, Pai C, Song Xiaoyu. The design of hybrid carry-lookahead/carry-select adders [ J ]. IEEE Transactions on Circuits and systems, 2002,49 (1): 16- 24. 被引量:1
  • 8WakerlyJF.数字设计原理与实践[M].3版.林生,金就林,译.北京:机械工业出版社,2003:64-127. 被引量:1
  • 9Yen-Mou Huang, James B Kuo. A High-speed Conditional carry Select (CCS) Adder Circuit with a Successively Incremented Carry Number Block (SICNB) Structure for Low-Voltage VLSI Implementation[J]. IEEE Transactions on Circuits and Systems, 2000,47(10):1074-1079. 被引量:1
  • 10Nagandra C, et al. Area-time-power Tradeoffs in Parallel Adders [J]. IEEE Transactions on Circuits and systems.1996,43(10): 689-702. 被引量:1

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部