摘要
证明了 :如果函数f属于带有限函数类B2σ ,p,1<p <∞ ,即 p 次可积且Fourier变换支集包含于闭区间 [-σ ,σ]的函数全体 ,则它能在Lp(R)范意义下由其样本序列 { f(kπ/σ) } k∈Z,{ f′(kπ/σ) } k∈Z通过Hermitecardinal插值完全重构 ,并且对 f∈Lrp(R) ,1<p
It is shown that a function f is in the bandlimited class B 2σ,p ,1<p<∞ , that is, those p integrable functions whose Fourier transform is supported in the interval [- σ, σ ], then it can be reconstructed in the sense of L p (R) norm by its sampling sequences {f(k π /σ)} k∈Z and { f′(k π /σ)} k∈Z via the Hermite cardinal interpolation . Moreover, if f belongs to L r p(R),1<p<∞, then the exact order of its aliasing error is determined.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2004年第3期315-319,共5页
Journal of Beijing Normal University(Natural Science)
基金
国家自然科学基金资助项目 (10 3 710 0 9)