期刊文献+

HERMITE型导数样本定理和Sobolev类上的混淆误差 被引量:4

SAMPLING THEOREM OF HERMITE TYPE AND ALIASING ERROR ON THE SOBOLEV CLASS OF FUNCTIONS
下载PDF
导出
摘要 证明了 :如果函数f属于带有限函数类B2σ ,p,1<p <∞ ,即 p 次可积且Fourier变换支集包含于闭区间 [-σ ,σ]的函数全体 ,则它能在Lp(R)范意义下由其样本序列 { f(kπ/σ) } k∈Z,{ f′(kπ/σ) } k∈Z通过Hermitecardinal插值完全重构 ,并且对 f∈Lrp(R) ,1<p It is shown that a function f is in the bandlimited class B 2σ,p ,1<p<∞ , that is, those p integrable functions whose Fourier transform is supported in the interval [- σ, σ ], then it can be reconstructed in the sense of L p (R) norm by its sampling sequences {f(k π /σ)} k∈Z and { f′(k π /σ)} k∈Z via the Hermite cardinal interpolation . Moreover, if f belongs to L r p(R),1<p<∞, then the exact order of its aliasing error is determined.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第3期315-319,共5页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目 (10 3 710 0 9)
关键词 Marcinkiewicz型不等式 带有限函数 导数样本 Sobolev函数类 混淆误差 Marcinkiewicz type inequality bandlimited function derivative sampling Sobolev classes of functions aliasing error
  • 相关文献

参考文献18

  • 1[1]Boas P R Jr.Entire functions[M].New York: Academic Press,1954 被引量:1
  • 2[2]Levin B Y.Lectures on entire functions[M].Providence: American Mathematical Society,1996 被引量:1
  • 3[3]Nikolskii S M.Approximation of functions of several variables and embedding theorems[M].New York: Springer-Verlag,1975 被引量:1
  • 4[4]Shanon C E.A mathematical theory of communication[J].Bell System Tech J,1948,27:379 被引量:1
  • 5[5]Whittaker J M.Interpolatory function theory[M].Cambridge: Cambridge Univ Press,1935 被引量:1
  • 6[6]Butzer P L.A survey of the Whattaker-Shannon sampling theorem and some of its extension[J].J Math Res Exposition,1983,3:185 被引量:1
  • 7[7]Butzer P L,Splettstsser W.A sampling theorem for duration-limited functions with error estimates[J].Inform and Control,1977,34:55 被引量:1
  • 8[8]Butzer P L,Stens R L.The Euler-MacLaurin summation formula,the sampling theorem,and approximate integration over the real axis[J].Linear Algebra Appl,1983,52-53:141 被引量:1
  • 9[9]Butzer P L,Stens R L.Sampling theorem for not necessarily band-limited functions:A Historical overview[J].SIAM Rev,1992,34: 40 被引量:1
  • 10[10]Brown J L.On the error estimates in reconstructing a non-bandlimited function by means of the bandpass sampling theorem[J].J Math Anal Appl,1967,18:75 被引量:1

同被引文献20

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部