期刊文献+

Hermite型插值的混淆误差的估计

The Estimation of Aliasing Error of Interpolation of Hermite Type
下载PDF
导出
摘要 证明了如果f∈Lp1(R),f′(x)=O(1+|x|)-(1/p-δ)),δ>0且f′在R上任何有限区间上Riemann可积,则‖f-Hσ(f)‖p(R)≤Cpσ-1ωkf′,σ1.其中Hσ(f)是f通过由其样本fkσπk∈Z和f′kσπk∈Z在Lp(R)中的指数2σ型整函数空间B2σ,p中的Her-mite型的插值算子,ωk(f,t):=sup|h|≤t‖Δhkf(x)‖p(R)为函数f的k阶光滑模. In this paper,it is proved that if f∈L^1_p(R),f′(x)=O((1+|x|)^(-1/p-δ)),δ>0 and f′ is Riemann integrable on every finite interval,then ‖f-H_σ(f)‖_(p(R))≤C_pσ^(-1)w_k(f′,1σ),where H_σ(f) is the Hermite type interpolation of f via its sampling sequences {f(kπ/σ)}_(k∈Z),and {f′(kπ/σ)}_(k∈Z) and B_(2σ,p) is the subspace L_p(R) of entire functions of exponential 2σ type.
出处 《沈阳理工大学学报》 CAS 2006年第1期12-14,共3页 Journal of Shenyang Ligong University
关键词 有限带函数 样本序列 插值算子 混淆误差 bandlinited function,sampling sequence,interpolating operator,aliasing error
  • 相关文献

参考文献7

  • 1[1]Nikolskii SM.Approximation of function of several variables and imbedding theorems[M].Berlin/Heidberg,NewYork:Springer-Verlag,1975. 被引量:1
  • 2[2]Higgings JR.Five short stories about the cardinal series[J].Bull Amer Math Soc,1985,(12):49-89. 被引量:1
  • 3[3]Rahman QI,Vertesi P.On the Lp convergence of Lagrange interpolation of entire functions of exponential type[J].J Approx Theory,1992,(69):302-317. 被引量:1
  • 4[4]Fang G.Whittaker-Kotelnikov-Shannon sampling theorem and aliasing error[J].J Approx theory,1996,(85):115-131. 被引量:1
  • 5李冱岸,房艮孙.HERMITE型导数样本定理和Sobolev类上的混淆误差[J].北京师范大学学报(自然科学版),2004,40(3):315-319. 被引量:4
  • 6[6]Shannon C E.A mathematical throey of communication[J].Bell System Tech J,1948,(27):379-423. 被引量:1
  • 7[7]Timan A F.Theory of approximation of functions of a real variable[M].Oxford:Pergamon,1963. 被引量:1

二级参考文献18

  • 1[1]Boas P R Jr.Entire functions[M].New York: Academic Press,1954 被引量:1
  • 2[2]Levin B Y.Lectures on entire functions[M].Providence: American Mathematical Society,1996 被引量:1
  • 3[3]Nikolskii S M.Approximation of functions of several variables and embedding theorems[M].New York: Springer-Verlag,1975 被引量:1
  • 4[4]Shanon C E.A mathematical theory of communication[J].Bell System Tech J,1948,27:379 被引量:1
  • 5[5]Whittaker J M.Interpolatory function theory[M].Cambridge: Cambridge Univ Press,1935 被引量:1
  • 6[6]Butzer P L.A survey of the Whattaker-Shannon sampling theorem and some of its extension[J].J Math Res Exposition,1983,3:185 被引量:1
  • 7[7]Butzer P L,Splettstsser W.A sampling theorem for duration-limited functions with error estimates[J].Inform and Control,1977,34:55 被引量:1
  • 8[8]Butzer P L,Stens R L.The Euler-MacLaurin summation formula,the sampling theorem,and approximate integration over the real axis[J].Linear Algebra Appl,1983,52-53:141 被引量:1
  • 9[9]Butzer P L,Stens R L.Sampling theorem for not necessarily band-limited functions:A Historical overview[J].SIAM Rev,1992,34: 40 被引量:1
  • 10[10]Brown J L.On the error estimates in reconstructing a non-bandlimited function by means of the bandpass sampling theorem[J].J Math Anal Appl,1967,18:75 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部