期刊文献+

A FAMILY OF BERNSTEIN QUASI-INTERPOLANTS ON[0,1] 被引量:7

A FAMILY OF BERNSTEIN QUASI-INTERPOLANTS ON[0,1]
下载PDF
导出
摘要 Suppose that we want to approximate fC[0,1]by polynomials in P_n,using only its values on X_n={i/n,0≤i≤n}.This can be done by the Lagrange interpolant L_n f or the classical Bernstein polynomial B_n f.But,when n tends to infinity,L_n f does not converge to f in general and the convergence of B_n f to fis very slow.We define a family of operators B^(k)_n, n≥k,which are intermediate ones between B(0)_n=B^(1)_n=B_n and B^(n)_n=L_n,and we study some of their properties.In particular,we prove a Voronovskaja-type theorem which asserts that B^(k)_n f-f=0(n^(-[(k+2)/2))for f sufficiently regular. Moreover,B(k)_n f uses only values of B_n f and its derivaties and can be computed by De Casteljau or subdivision algorithms. Suppose that we want to approximate fC[0,1]by polynomials in P_n,using only its values on X_n={i/n,0≤i≤n}.This can be done by the Lagrange interpolant L_n f or the classical Bernstein polynomial B_n f.But,when n tends to infinity,L_n f does not converge to f in general and the convergence of B_n f to fis very slow.We define a family of operators B^(k)_n, n≥k,which are intermediate ones between B(0)_n=B^(1)_n=B_n and B^(n)_n=L_n,and we study some of their properties.In particular,we prove a Voronovskaja-type theorem which asserts that B^(k)_n f-f=0(n^(-[(k+2)/2))for f sufficiently regular. Moreover,B(k)_n f uses only values of B_n f and its derivaties and can be computed by De Casteljau or subdivision algorithms.
作者 P.Sablonniere
机构地区 Laboratoire
出处 《Analysis in Theory and Applications》 1992年第3期62-76,共15页 分析理论与应用(英文刊)
  • 相关文献

同被引文献18

  • 1DuanLiqin LiCuixiang.THE GLOBAL APPROXIMATION BY LEFT-BERNSTEIN-DURRMEYER QUASI-INTERPOLANTS IN Lp[0,1][J].Analysis in Theory and Applications,2004,20(3):242-251. 被引量:3
  • 2Shunsheng Guo,Lixia Liu,Qiulan Qi,Gengsheng Zhang.A strong converse inequality for left gamma quasi-interpolants in L p-spaces[J].Acta Mathematica Hungarica (-).2004(1-2) 被引量:1
  • 3M. W. Müller.The Central Approximation Theorems for the Method of Left Gamma Quasi-Interpolants in L p spaces[J].Journal of Computational Analysis and Applications.2001(3) 被引量:1
  • 4A. Lupa?,M. Müller.Approximationseigenschaften der Gammaoperatoren[J].Mathematische Zeitschrift.1967(3) 被引量:1
  • 5Guo, S,Liu, L,Qi, Q,Zhang, G.A Strong Converse Inequality for Left Gamma Quasi-Interpolants in Lp Space[].Acta Mathematica Hungarica.2004 被引量:1
  • 6Guo, S,Zhang, G,Qi, Q,Liu, L.Pointwise Weight Approximation by Left Gamma Quasi-Interpolants[].JComput and Appl.2005 被引量:1
  • 7Lupas, A,Mach, D. H,Maier, V,Müller, M. W.Linear Combination of Gamma Operators in Lp Space[].Results in Mathematics.1998 被引量:1
  • 8Lupas, A,Mach, D. H,Maier, V,Müller, M. W.Certain Results Involving Gamma Operators[].New Developments in Approximation Theory.1999 被引量:1
  • 9Müller,M. W.The Central Approximation Theorems for the Method of Left Gamma Quasi-Interpolants in Lp Space[].J Comput and Appl.2001 被引量:1
  • 10Totik,V.The Gamma Operators in Lp Space[].Publications Mathematicae Debrecen.1985 被引量:1

引证文献7

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部