摘要
The time-dependent behavior of non-equilibrium condensation of moist air through a Ludwieg tube with a diaphragm downstream is investigated by using a computational fluid dynamics work. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The present computations represent the experimental flows well. The results obtained show that for an initial relative humidity over 40 %, the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to non-equilibrium condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity. Furthermore, the variations of condensation properties are also
The time-dependent behavior of non-equilibrium condensation of moist air through a Ludwieg tube with a diaphragm downstream is investigated by using a computational fluid dynamics work. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The present computations represent the experimental flows well. The results obtained show that for an initial relative humidity over 40%, the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to non-equilibrium condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity. Furthermore, the variations of condensation properties are also discussed for cases with and without occurrence of condensation upstream of nozzle.