期刊文献+

基于视频流的目标检测反馈模型 被引量:3

Feedback model for object detection based on video stream
下载PDF
导出
摘要 为了增强智能视觉监控系统的实时性,提出了一种反馈模型。首先采用基于混合高斯模型的减背景算法进行运动目标检测;然后采用Kalman滤波算法进行运动目标跟踪;进而提出了一种反馈模型,将跟踪阶段Kalman滤波的状态预测值反馈到检测阶段的减背景操作中来约束目标检测的有效范围。最后将本文方法(采用反馈模型)与一般方法(未采用反馈模型)进行了对比实验,结果表明,本文方法具有良好的目标检测与跟踪效果,在不影响准确性的前提下,显著降低了运算量,增强了系统的实时性,对于智能视觉监控系统的现实应用具有重要意义。 A feedback model was put forward in order to improve the real-time capability of intelligent video surveillance.First,the background subtraction method based on Gaussian mixture model was adopted to detect moving objects.And the Kalman filter algorithm was adopted to perform the real-time object tracking.Then a feedback model was put forward.In the model,the results of tracking was fed back to the detection stage in order to restrict the detection regions.By experiments,the proposed method(which used the feedback model) was compared with the common method(which didn′t use the feedback model).The experimental results illustrate the good performance and enhanced real-time capability of the proposed method.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第S2期401-405,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 广东省教育部产学研结合项目(2007B090400031) 吉林省信息产业厅专项基金项目(2007042)
关键词 计算机应用 智能视觉监控 运动目标检测 目标跟踪 混合高斯模型 KALMAN滤波 computer application intelligent video surveillance moving object detection object tracking Gaussian mixture model Kalman fiter
  • 相关文献

参考文献10

  • 1Duque D,Santos H,Cortez P.Prediction of abnor-mal behaviors for intelligent video surveillance sys-tems. Proceedings of the 2007 IEEE Symposiumon Computational Intelligence and Data Mining(CI-DM 2007) . 2007 被引量:1
  • 2Ekpar F.A framework for intelligent video surveil-lance. Proceedings of the IEEE 8th Internation-al Conference on Computer and Information Tech-nology Workshops . 2008 被引量:1
  • 3Bouttefroy P L M,Bouzerdoum A,Phung S L,etal.Vehicle tracking by non-drifting mean-shift usingprojective Kalman filter. Proceedings of the11th International IEEE Conference on IntelligentTransportation Systems . 2008 被引量:1
  • 4Stauffer C,Grimson W.Learning patterns of activi-ty using real-time tracking. IEEE Transtractionson Pattern Analysis and Machine Intelligence . 2008 被引量:1
  • 5Cuevas E,Zaldivar D,Rojas R.Kalman filter forvision tracking. Technical Report B05-12,FreieUniversitat Berlin,Fachbereich Mathematik und In-formatik . 2005 被引量:1
  • 6Stauffer C,Grimson WEL.Learning Patterns of Activity Using Real-Time Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2000 被引量:1
  • 7Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 1999 被引量:1
  • 8Sundaraj K,Retnasamy V.Fast background subtraction for real time monitoring. Proceedings of the Third IASTED International Conference . 2007 被引量:1
  • 9Power P.W,Schoonees J.A.Understanding Background Mixture Models for Foreground Segmentation. Proceed of Image and Vision Computing . 2002 被引量:1
  • 10Shapiro Linda G,Stockman George C.Computer Vision. . 2005 被引量:1

同被引文献21

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部