摘要
Let p be an odd prime and let a,m ∈ Z with a 】 0 and p ︱ m.In this paper we determinep ∑k=0 pa-1(2k k=d)/mk mod p2 for d=0,1;for example,where(-) is the Jacobi symbol and {un}n≥0 is the Lucas sequence given by u0 = 0,u1 = 1 and un+1 =(m-2)un-un-1(n = 1,2,3,...).As an application,we determine ∑0【k【pa,k≡r(mod p-1) Ck modulo p2 for any integer r,where Ck denotes the Catalan number 2kk /(k + 1).We also pose some related conjectures.
Let p be an odd prime and let a,m ∈ Z with a > 0 and p ︱ m.In this paper we determinep ∑k=0 pa-1(2k k=d)/mk mod p2 for d=0,1;for example,where(-) is the Jacobi symbol and {un}n≥0 is the Lucas sequence given by u0 = 0,u1 = 1 and un+1 =(m-2)un-un-1(n = 1,2,3,...).As an application,we determine ∑0<k<pa,k≡r(mod p-1) Ck modulo p2 for any integer r,where Ck denotes the Catalan number 2kk /(k + 1).We also pose some related conjectures.
基金
supported by National Natural Science Foundation of China (Grant No.10871087)
the Overseas Cooperation Fund of China (Grant No.10928101)