期刊文献+

Binomial coefficients,Catalan numbers and Lucas quotients 被引量:5

Binomial coefficients,Catalan numbers and Lucas quotients
原文传递
导出
摘要 Let p be an odd prime and let a,m ∈ Z with a 】 0 and p ︱ m.In this paper we determinep ∑k=0 pa-1(2k k=d)/mk mod p2 for d=0,1;for example,where(-) is the Jacobi symbol and {un}n≥0 is the Lucas sequence given by u0 = 0,u1 = 1 and un+1 =(m-2)un-un-1(n = 1,2,3,...).As an application,we determine ∑0【k【pa,k≡r(mod p-1) Ck modulo p2 for any integer r,where Ck denotes the Catalan number 2kk /(k + 1).We also pose some related conjectures. Let p be an odd prime and let a,m ∈ Z with a > 0 and p ︱ m.In this paper we determinep ∑k=0 pa-1(2k k=d)/mk mod p2 for d=0,1;for example,where(-) is the Jacobi symbol and {un}n≥0 is the Lucas sequence given by u0 = 0,u1 = 1 and un+1 =(m-2)un-un-1(n = 1,2,3,...).As an application,we determine ∑0<k<pa,k≡r(mod p-1) Ck modulo p2 for any integer r,where Ck denotes the Catalan number 2kk /(k + 1).We also pose some related conjectures.
出处 《Science China Mathematics》 SCIE 2010年第9期2473-2488,共16页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10871087) the Overseas Cooperation Fund of China (Grant No.10928101)
关键词 CONGRUENCES BINOMIAL COEFFICIENTS CATALAN NUMBERS Lucas QUOTIENTS congruences binomial coefficients Catalan numbers Lucas quotients
  • 相关文献

参考文献15

  • 1孙智伟.REDUCTION OF UNKNOWNS IN DIOPHANTINE REPRESENTATIONS[J].Science China Mathematics,1992,35(3):257-269. 被引量:3
  • 2E. B. Vinberg.On some number-theoretic conjectures of V. Arnold[J]. Japanese Journal of Mathematics . 2007 (2) 被引量:1
  • 3Zhi-Wei Sun.On the sum Σ k≡r(modm) ( k n ) and related congruencesand related congruences[J]. Israel Journal of Mathematics . 2002 (1) 被引量:1
  • 4Graham R L,Knuth D E,Patashnik O.Concrete Mathematics. . 1994 被引量:1
  • 5Sun Z W.Binomial coefficients and quadratic fields. Proceedings of the American Mathematical Society . 2006 被引量:1
  • 6Sun Z W.Various congruences involving binomial coefficients and higher-order Catalan numbers. http://arxiv.org/abs/0909.3808 . 被引量:1
  • 7Sun Z W,Tauraso R.New congruences for central binomial coefficients. Advances in Applied Mechanics . 2010 被引量:1
  • 8Sun Z W,Tauraso R.On some new congruences for binomial coefficients. http://arxiv. org/abs/0709.1665 . 被引量:1
  • 9Zhao L L,Pan H,Sun Z W.Some congruences for the second-order Catalan numbers. Proceedings of the American Mathematical Society . 2010 被引量:1
  • 10Sethian JA.Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. . 1999 被引量:1

共引文献2

同被引文献54

  • 1Lehmer E.On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Annals of Mathematics . 1938 被引量:1
  • 2Kilbourn T.An extension of the Ap′ery number supercongruence. Acta Arithmetica . 2006 被引量:1
  • 3Ishikawa T.On Beukers’’congruence. Kobe Journal of Mathematics . 1989 被引量:1
  • 4Gould H W.Combinatorial Identities. . 1972 被引量:1
  • 5Beukers F.Another congruence for the Ap′ery numbers. Journal of Number Theory . 1987 被引量:1
  • 6Baruah N D,Berndt B C.Eisenstein series and Ramanujan-type series for1/π. The Ramanujan Journal . 2010 被引量:1
  • 7Amdeberhan T,Zeilberger D.Hypergeometric series acceleration via the WZ method. Electron J Combin . 1997 被引量:1
  • 8Ahlgren A.Gaussian hypergeometric series and combinatorial congruences. Symbolic Computation,NumberTheory,Special Functions,Physics and Combinatorics . 2001 被引量:1
  • 9Rodriguez-Villegas F.Hypergeometric families of Calabi-Yau manifolds. Fields Inst Commun . 2003 被引量:1
  • 10Prodinger H.Human proofs of identities by Osburn and Schneider. Integers . 2008 被引量:1

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部