期刊文献+

Finite element formulation based on proper orthogonal decomposition for parabolic equations 被引量:17

Finite element formulation based on proper orthogonal decomposition for parabolic equations
原文传递
导出
摘要 A proper orthogonal decomposition (POD) method is applied to a usual finite element (FE) formulation for parabolic equations so that it is reduced into a POD FE formulation with lower dimensions and enough high accuracy. The errors between the reduced POD FE solution and the usual FE solution are analyzed. It is shown by numerical examples that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is also shown that this validates the feasibility and efficiency of POD method. A proper orthogonal decomposition (POD) method is applied to a usual finite element (FE) formulation for parabolic equations so that it is reduced into a POD FE formulation with lower dimensions and enough high accuracy. The errors between the reduced POD FE solution and the usual FE solution are analyzed. It is shown by numerical examples that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is also shown that this validates the feasibility and efficiency of POD method.
出处 《Science China Mathematics》 SCIE 2009年第3期585-596,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos. 10871022, 10771065,and 60573158) Natural Science Foundation of Hebei Province (Grant No. A2007001027)
关键词 proper orthogonal decomposition finite element formulation parabolic equations error analysis 65N30 35Q10 proper orthogonal decomposition finite element formulation parabolic equations error analysis
  • 相关文献

参考文献22

  • 1K. Kunisch,S. Volkwein.Galerkin proper orthogonal decomposition methods for parabolic problems[J]. Numerische Mathematik . 2001 (1) 被引量:1
  • 2Jolliffie I T.Principal Component Analysis. . 2002 被引量:1
  • 3Luo Z D,Chen J,Navon I M, et al.An optimizing reduced PLSMFE formulation for non-stationary conduction–convection problems. Internat J Numer Methods Fluids . 被引量:1
  • 4Thomee V.Galerkin Finite Element Methods for Parabolic Problems. . 1997 被引量:1
  • 5Luo Zhendong.Mixed finite element methods and applications. . 2006 被引量:1
  • 6Holmes,P.,Lumley,J. L.,Berkooz,G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry . 1996 被引量:1
  • 7Fukunaga K.Introduction to Statistical Recognition. . 1990 被引量:1
  • 8Crommelin,D. T.,Majda,A. J.Strategies for model reduction: comparing different optimal bases. Journal of the Atmospheric Sciences . 2004 被引量:1
  • 9Majda,AJ,Timofeyev,I,Vanden-Eijnden,E.Systematic strategies for stochastic mode reduction in climate. Journal of the Atmospheric Sciences . 2003 被引量:1
  • 10Selten,F.Barophilic empirical orthogonal functions as basis functions in an atmospheric model. Journal of the Atmospheric Sciences . 1997 被引量:1

同被引文献20

引证文献17

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部