期刊文献+

温度对GaSb/GaAs量子点尺寸分布的影响 被引量:2

Effect of Growth Temperature on Size Distribution of GaSb/GaAs Quantum Dots
下载PDF
导出
摘要 采用低压金属有机物化学气相沉积(LP-MOCVD)法制备GaSb/GaAs量子点。通过对不同生长温度的样品进行分析发现温度的变化对GaSb/GaAs量子点的相位角无明显影响,量子点的形状是透镜型。由于量子点特殊的应力分布,可实现量子点的"自限制"生长。量子点的化学势不连续性以及Ostwald熟化机制的影响使得量子点尺寸分布在一定范围内不连续,会出现两种尺寸模式的量子点生长。Sb原子的表面迁移率对GaSb/GaAs量子点生长有较大的影响。升高温度可有效改善量子点的分立性,在升温过程中量子点体现出其熟化过程,高温时表面原子的解析附作用对量子点尺寸和密度的影响较大。 The GaSb /GaAs quantum dots(QDs) were prepared by the technique of low pressure metalorganic chemical vapor deposition(LP-MOCVD).Based on analysis of samples for different growth temperatures,it turns out that the growth temperatures have little contribution to the morphology of GaSb / GaAs QDs and the shape of GaSb / GaAs QDs turns to be lens.The stress distributions between GaSb / GaAs interface lead to the 'self-limiting'formation of GaSb QDs.Besides,due to discontinuous chemical potential of QDs,coupled with the effect of curing mechanism of Ostwald,the size distribution of QDs in certain range is discrete and two modes of QDs size appear.The surface mobility of antimony(Sb) adatoms has an important influence on the growth of GaSb / GaAs QDs.The discreteness of QDs can be efficiently improved by raising the growth temperature.With the process of heating up,the curing process of QDs can be presented.
出处 《发光学报》 EI CAS CSCD 北大核心 2013年第8期1011-1016,共6页 Chinese Journal of Luminescence
基金 国家自然科学基金(61076010) 集成光电子学国家重点联合实验室自主课题(IOSKL2012ZZ13)资助项目
关键词 GaSb/GaAs自组装量子点 尺寸分布 MOCVD self-assembled GaSb /GaAs QDs size distribution MOCVD
  • 相关文献

参考文献4

二级参考文献83

  • 1荻野俊郎 本间芳和.半导体表面的原子结构设计〔日文〕[J].日本物理学会志,2001,56:83-90. 被引量:2
  • 2Johnson H T and. Freund L B 1997 J. Appl. Phys. 81 6081 被引量:1
  • 3Zhou W M, Wang C Y, Chen Y H and Wang Z G 2006 Chin. Phys. 15 1315 被引量:1
  • 4Cai C Y and Zhou W M 2007 Acta Phys. Sin. 56 4841 (in Chinese) 被引量:1
  • 5Wu Z Q and Wang B 2001 Film Growth (Beijing: Science Press) (in Chinese) pp172-176 被引量:1
  • 6Budimen R A and Ruda H E 2000 J. Appl. Phys. 88 4586 被引量:1
  • 7Krishnamurthy M, Drucker J S and Venables J A 1991 J. Appl. Phys. 69 6461 被引量:1
  • 8Kukta R V and Freund L B 1997 J. Mech. Phys. Solids 45 1835 被引量:1
  • 9LeGoues F K, Reuter M C, Tersoff J, Hammar M and Tromp R M 1994 Phys. Rev. Lett. 73 300 被引量:1
  • 10Shchukin V A, Ledentsov N N, Kop'ev l? S and Bimberg D 1995 Phys. Rev. Lett. 7"5 2968 被引量:1

共引文献7

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部