期刊文献+

THE VANISHING PRESSURE LIMIT OF SOLUTIONS TO THE SIMPLIFIED EULER EQUATIONS FOR ISENTROPIC FLUIDS

THE VANISHING PRESSURE LIMIT OF SOLUTIONS TO THE SIMPLIFIED EULER EQUATIONS FOR ISENTROPIC FLUIDS
原文传递
导出
摘要 In this paper,the Riemann problem of the 1-D reduced model for the 2-D Euler equations is considered and the Riemann solutions are obtained.It is proved that,as the pressure vanishes,they converge to two kinds of Riemann solutions to the 1D reduced model for the 2-D transport equations:one contains δ-shocks,the other contains vacuum. In this paper,the Riemann problem of the 1-D reduced model for the 2-D Euler equations is considered and the Riemann solutions are obtained.It is proved that,as the pressure vanishes,they converge to two kinds of Riemann solutions to the 1D reduced model for the 2-D transport equations:one contains δ-shocks,the other contains vacuum.
出处 《Annals of Differential Equations》 2012年第1期115-126,共12页 微分方程年刊(英文版)
关键词 Euler equations transport equations measure solutions δ-shocks vacuum states Euler equations transport equations measure solutions δ-shocks vacuum states
  • 相关文献

参考文献15

  • 1王振,丁夏畦.UNIQUENESS OF GENERALIZED SOLUTION FOR THE CAUCHY PROBLEM OF TRANSPORTATTION EQUATIONS[J].Acta Mathematica Scientia,1997,17(3):341-352. 被引量:6
  • 2王振,黄飞敏,丁夏畦.ON THE CAUCHY PROBLEM OF TRANSPORTATION EQUATIONS[J].Acta Mathematicae Applicatae Sinica,1997,13(2):113-122. 被引量:4
  • 3Feimin Huang,Zhen Wang.Well Posedness for Pressureless Flow[J].Communications in Mathematical Physics.2001(1) 被引量:1
  • 4Jiaxin Hu.One-Dimensional Riemann Problem for Equations of Constant Pressure Fluid Dynamics with Measure Solutions by the Viscosity Method[J].Acta Applicandae Mathematicae.1999(2) 被引量:1
  • 5E Weinan,Yu. G. Rykov,Ya. G. Sinai.Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics[J].Communications in Mathematical Physics.1996(2) 被引量:1
  • 6R.P.Agarwal,D.W.Halt.A modified CUSP scheme in wave particle split form for un-structured grid Euler flows[].Frontiers of Computational Fluid Dynamics.1994 被引量:1
  • 7F.Bouchut.On zero-pressure gas dynamics[].Advances in Kinetic Theory and Computing.1994 被引量:1
  • 8T.Chang,G.Q Chen,S.Yang.On the Riemann problem for two-dimensional Euler equa-tions,II.Interaction of contact discontinuties[].Discrete ContinDynSyst.2000 被引量:1
  • 9D.Mitrovic,M.Nedeljkov.Delta-shock waves as a limit of shock waves[].JHyperbolic Differential Equations.2007 被引量:1
  • 10S.F.Shandarin,Ya.B.Zeldovich.The large-scale structure of the universe:turbulence,intermittency,structure in a self-gravitating medium[].Reviews of Modern Physics.1989 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部