期刊文献+

Numerical method of the Riemann problem for two-dimensional multi-fluid flows with general equation of state 被引量:1

Numerical method of the Riemann problem for two-dimensional multi-fluid flows with general equation of state
下载PDF
导出
摘要 Based on the classical Roe method, we develop an interface capture method according to the general equation of state, and extend the single-fluid Roe method to the two-dimensional (2D) multi-fluid flows, as well as construct the continuous Roe matrix for the whole flow field. The interface capture equations and fluid dynamic conservative equations are coupled together and solved by using any high-resolution schemes that usually suit for the single-fluid flows. Some numerical examples are given to illustrate the solution of 1D and 2D multi-fluid Riemann problems. Based on the classical Roe method, we develop an interface capture method according to the general equation of state, and extend the single-fluid Roe method to the two-dimensional (2D) multi-fluid flows, as well as construct the continuous Roe matrix for the whole flow field. The interface capture equations and fluid dynamic conservative equations are coupled together and solved by using any high-resolution schemes that usually suit for the single-fluid flows. Some numerical examples are given to illustrate the solution of 1D and 2D multi-fluid Riemann problems.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第1期22-34,共13页 中国物理B(英文版)
关键词 Riemann problem multi-fluid flows Roe scheme general equation of state Riemann problem, multi-fluid flows, Roe scheme, general equation of state
  • 相关文献

参考文献22

  • 1Miller G H and Puckett E G 1996 J. Comput. Phys. 128 134. 被引量:1
  • 2Menikoff R and Plohr B J 1989 Rev. Mod. Phys. 61 75. 被引量:1
  • 3Balsara D S 1994 J. Comput, Phys. 114 284. 被引量:1
  • 4Glaister P 1988 J. Comput. Phys, 74 382. 被引量:1
  • 5Quirk J J 1994 Int. Numer. Methods. Fluids 18 555. 被引量:1
  • 6Schulz-Rinne C W, Collins J P and Glaz H M 1993 SIAM J. Sci. Comput. 14 1394. 被引量:1
  • 7Karni S 1996 SIAM J. Sci. Comput. 17 1019. 被引量:1
  • 8Guo W B, Wang N C, Shi B C and Guo Z L 2003 Chin.Phys, 12 67. 被引量:1
  • 9Bai J S, Li P, Zhang Z J, Hua J S and Tan H 2004 Chin.Phys. 18 1992. 被引量:1
  • 10Xu Y S, Wu F M, Chen Y Y and Xu X Z 2003 Chin. Phys.12 621. 被引量:1

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部