期刊文献+

二通道全息信号解析盲分离方法

Two Channel Analytical BSS for Obtaining Full-info Signals
下载PDF
导出
摘要 现有盲信号分离方法给出的是幅值和相位没有量值意义的信号,其输出是只包含频谱特征信息的波形信号。因此,在机械行业中的有效应用基本上局限于故障诊断中的振源确定。针对现有盲分离结果不能满足机械工程中多数动态问题同时对频率、幅值和相位信息的要求,提出了全息信号的解析盲分离方法。该方法完全脱离了基于目标函数和优化算法的迂回分离策略。根据信号频域具有稀疏特性的事实,利用频域中可知的幅值和相位信息首先完成对混合矩阵的估计,然后利用已求解到的幅值比和相对时移参数进行线性方程组的解析运算并恢复出各待求信号。试验结果表明该分离方法的分离结果是幅值、相位和频率信息确切的全息信号,适合机械工程中振动强度、机械阻抗测试等动态分析对信号的要求。 The outputs of existing blind signal separation(BSS) are signals which can present spectral characters of the separated signals but fail to provide valid amplitudes and phases.Consequently,their application in mechanical area is basically limited to detecting vibrating sources in fault diagnosis.Here an analytical BSS method used for getting full-info signals is introduced,aiming at that the prevailing BSS is unable to satisfy the needs for frequency,amplitude and phase information necessary for dealing with dynamic problems in mechanical engineering.The analytical method gets rid of the roundabout separation strategy based on objective functions and optimization algorithms taken by traditional BSS.It primarily estimates the mixing matrix on the basis of sparseness in signal frequency domain and by using available amplitude and phase information in the frequency domain,then carries out analytical operation of linear equations by using the solved amplitude ratio and relative time shift parameter,and lastly restores the signals expected.Experiment results show that the separated signals contain the effective information of amplitude,phase and frequency,which are the so called full-info signals suitable for dynamic analyses in mechanical engineering,such as the calculation of vibration intensity and mechanical impedance.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第6期7-11,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(60672138)
关键词 动态分析 信号分离 解析盲信号分离 全息信号 Dynamic analysis Signal separation Analytical blind signal separation(BSS) Full-info signal
  • 相关文献

参考文献6

二级参考文献37

  • 1肖明,谢胜利.线性非奇异盲信号混叠的分离矩阵个数[J].华南理工大学学报(自然科学版),2004,32(10):41-45. 被引量:3
  • 2李志农,何永勇,褚福磊.基于Wigner高阶谱的机械故障诊断的研究[J].机械工程学报,2005,41(4):119-122. 被引量:27
  • 3ROAN M J, ERLING J G, SIBUL L H. A new, non-linear, adaptive, blind source separation approach to gear tooth failure detection and analysis [J]. Mechanical Systems and Signal Processing, 2002, 16(5): 719-740. 被引量:1
  • 4GELLE G, COLAS M. Blind Sources separation.. A tool for rotating machine monitoring by vibrations analysis? [J]. Journal of Sound and Vibration, 2001, 248(5): 865-885. 被引量:1
  • 5SHEN Yongjun, YANG Shaopu. A new blind source separation method and its application to fault diagnosis of rolling bearing [J]. International Journal of Nonlinear Science and Numerical Simulation, 2006, 7(3): 245-250. 被引量:1
  • 6COMON E Blind identification and source separation in 2×3 under-determined mixture[J]. IEEE Trausaction on Signal Processing, 2004, 52(1): 11-22. 被引量:1
  • 7LEE T, LEWICKI M S, GIROLAMI M. Blind source separation of more sources than mixtures using overcomplete representations [J]. IEEE Signal Processing Letters, 1999, 6(4): 87-90. 被引量:1
  • 8CARDOSO J F. Higher order contrast for independent component analysis[J]. Neural Computation, 1999, 11 (1): 157-193. 被引量:1
  • 9Bell and J Sejnowki.An information-maximisation approach to blind separation and blind deconvolution[J].Neural Compautation,1995,7 (6):1004-1034. 被引量:1
  • 10J F Cardoso.Blind signal separation:statistical principles[J].Proce IEEE,1998,90(8):2009 -2026. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部