摘要
Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom transfer radical polymerization (ATRP) of styrene, in the presence of citric acid (CA) as non-surfactant template or pore-forming agent and followed by ethanol extraction to remove template molecules. The materials were characterized by infrared spectroscopy OR), N-2 adsorption-desorption measurements, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The results indicate that the materials prepared with 50 wt%-60 wt% template contents have average pore sizes of 2-3 nm and large surface areas (ca. 886 m(2)/g) as well as high pore volumes (ca. 0.53 cm(3)/g). The mesoporosity arises from interconnected channels and pores with disordered arrangements. The pore diameters and pore volumes increase as the template content is increased. The pore diameters show a little change upon heating at 200degreesC overnight. However, the materials do not have good hydrothermal stability.
Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom transfer radical polymerization (ATRP) of styrene, in the presence of citric acid (CA) as non-surfactant template or pore-forming agent and followed by ethanol extraction to remove template molecules. The materials were characterized by infrared spectroscopy OR), N-2 adsorption-desorption measurements, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The results indicate that the materials prepared with 50 wt%-60 wt% template contents have average pore sizes of 2-3 nm and large surface areas (ca. 886 m(2)/g) as well as high pore volumes (ca. 0.53 cm(3)/g). The mesoporosity arises from interconnected channels and pores with disordered arrangements. The pore diameters and pore volumes increase as the template content is increased. The pore diameters show a little change upon heating at 200degreesC overnight. However, the materials do not have good hydrothermal stability.
基金
This project was supported by the National Natural Science Foundation of China to K. Y. Qiu (Grant No. 29874002) and Outstanding Young Scientist Award to Y. Wei (Grant No. 29825504).