摘要
This paper presents an all-parametric model of radar target in optic region, in which the localized scattering center's frequency and aspect angle dependent scattering level, distance and azimuth locations are modeled as the feature vectors. And the traditional TLS-Prony algorithm is modified to extract these feature vectors. The analysis of Cramer-Rao bound shows that the modified algorithm not only improves the restriction of high signal-to-noise ratio(SNR)threshold of traditional TLS-Prony algorithm, but also is suitable to the extraction of big damped coefficients and high-resolution estimation of near separation poles. Finally, an illustrative example is presented to verify its practicability in the applications. The experimental results show that the method developed can not only recognize two airplane-like targets with similar shape at low SNR, but also compress the original radar data with high fidelity.
This paper presents an all-parametric model of radar target in optic region, in which the localized scattering center's frequency and aspect angle dependent scattering level, distance and azimuth locations are modeled as the feature vectors. And the traditional TLS-Prony algorithm is modified to extract these feature vectors. The analysis of Cramer-Rao bound shows that the modified algorithm not only improves the restriction of high signal-to-noise ratio(SNR)threshold of traditional TLS-Prony algorithm, but also is suitable to the extraction of big damped coefficients and high-resolution estimation of near separation poles. Finally, an illustrative example is presented to verify its practicability in the applications. The experimental results show that the method developed can not only recognize two airplane-like targets with similar shape at low SNR, but also compress the original radar data with high fidelity.
基金
~~