摘要
本文研究了方程f′′+A(z)f′+B(z)f=0与f′′+A(z)f′+B(z)f=F亚纯解的零点与增长性,其中A(z),B(z)(■0),F(z)(■0)为亚纯函数,得到了方程亚纯解的增长级、下级、超级、二级不同零点收敛指数等的精确估计,改进了KwonKi-Ho、陈宗煊与杨重骏、Benharrat Beladi等的结果.
In this paper,we investigate the zeros and growths of meromorphic solutions of the equations f +A(z)f +B(z)f=0 and f +A(z)f +B(z)f=F,where A(z),B(z)(■0),F(z)(■0)are meromorphic functions.We obtain some precise estimates of the order of growth,the lower order,the hyper-order and the hyper-exponent of convergence of distinct zeros of the meromorphic solutions of the equations and improve the results of Kwon Ki-Ho,Chen Z X and Yang C C,Benharrat Belaidi greatly.
出处
《应用数学》
CSCD
北大核心
2010年第1期18-26,共9页
Mathematica Applicata
基金
Supported by the Science and Technology Project of Jiangxi Provincial Department of Education([2007]135)
the NSF of Jiangxi Province(2008GQS0053)
关键词
微分方程
亚纯函数
级与下级
超级
二级不同零点收敛指数
Differential equation
Meromorphic solution
Order and lower order
Hyper-order
Hyper-exponent of convergence of distinct zeros