摘要
为了提高恒虚警检测器在均匀背景中的检测性能及增强对干扰的鲁棒性,基于自动删除单元平均(ACCA)方法提出一种新的恒虚警检测器(MACCA),它的前沿和后沿滑窗均采用ACCA算法产生局部估计,再对二者求和得到背景功率水平估计,从而设置自适应检测门限。在Swerling II型目标假设下,推导出MACCA-CFAR在均匀背景下虚警概率Pfa和检测概率Pd的解析表达式。分别针对均匀背景和非均匀背景分析了MACCA的性能,并与其他现有方案进行了比较。结果表明MACCA继承ACCA优点的同时,有效地提高了在杂波边缘环境下的虚警控制能力,它的虚警尖峰比ACCA少了近一个数量级,并且样本排序时间只有ACCA的一半。
To increase the detector robust performance,a new constant false alarm rate(CFAR) detector based on the automatic censored cell averaging(ACCA)—MACCA is proposed.It takes the sum of two ACCA local estimations as a noise power estimation.For the new CFAR detector analytic expressions of the false alarm rate,detection probabilities are obtained in homogeneous background.Compared with other schemes,simulation results show that MACCA has the advantage of ACCA,and improves the control ability of the false alarm ...
出处
《数据采集与处理》
CSCD
北大核心
2008年第5期516-520,共5页
Journal of Data Acquisition and Processing
基金
国家自然科学基金(60802072)资助项目
国防十一五预研基金(1010602010102)资助项目
关键词
雷达
检测
恒虚警率
自动删除单元平均
排序数据方差
radar
detection
constantfalse alarm rate(CFAR)
automatic censored cell averaging(ACCA)
ordered data variability(ODV)