期刊文献+

基于线性回归的关联规则相关性方法的研究 被引量:2

Correlation Technique Research of Association Rule Base on Linear Regression
下载PDF
导出
摘要 关联规则挖掘问题是数据挖掘的一个重要研究领域.对关联规则在相关性方面的不足进行了分析,提出了一种基于线性回归和反向验证的方法,来对关联规则的相关性进行论证.这种方法使对关联规则相关性的认识更加精确,并为关联规则能成为决策提供了支持. The mining association rules is an important research field in datamining. This paper has analyzed some problems of association rules in the field of correlation and proposed a method that based on linear regression and backward verification to demonstrate the relevance of the association rules. This method has made the understanding of the relevant association rules more precise and supported association rules to be decision-making.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第z1期291-294,共4页 Journal of Computer Research and Development
关键词 线性回归 反向验证 关联规则 相关性 linear regression backward verification association rule correlation
  • 相关文献

参考文献5

二级参考文献25

  • 1[1]Agrawal R.Srikant R.Fast Algorithm for Mining Association Rules.lnProcccdings of the 20th VLDB Confercnec . Santigo . Chile, 1994 被引量:1
  • 2[2]Srikant R,Agrawal RMining Generalized Association RuleslnProcccdings of the 21st VLDB Conference Zurich, Switzerland. 1995 被引量:1
  • 3[3]Agrawal R,Imiclinski T,Swami A Mining Association Rules between Sctsof ltems in Large Databases Procccdings of the 1993 ACM SIGMODConfercnec, Washington DC, USA, 1993-05 被引量:1
  • 4[4]Brin S,Motwani R,Silverstein CBeyond Market Baskets:GcncralizingAssociation Rules to Corrclations. Procccdings of the 1997 ACMSIGMOD Conferencc on Management of Data. pages 265-276 , Tucson ,AZ, 1997-05:256-276 被引量:1
  • 5[5]Fayyad UM,Piatctsky-shapiro GSmyth P Knowledge Discovcry and DataMining:Towards a Unifying Framcwork Proeof the 2meInt.Confer. Knowledgc Discovery and Data Mining (KDD-96).Portland.1996 被引量:1
  • 6Carlin B.P.,Louis T.A..Bayes and Empirical Bayes Methods for Data Analysis.2nd Edition.London U.K.:Chapman &Hall,2000 被引量:1
  • 7Light R.J.,Margolin B.H..An analysis of variance for categorical data.Journal of the American Statistical Association,1971,66:534~544 被引量:1
  • 8Steven R.,Matthew S.etal.Integrated Public Use Microdata Series:Version 2.0.Historical Census Projects,University of Minnesota,Minneapolis,1997 被引量:1
  • 9Au W.-H.,Chan K.C.C.,Yao X..A novel evolutionary data mining algorithm with applications to churn prediction.IEEE Transactions on Evolutionary Computation,2003,7 (6):532~545 被引量:1
  • 10http://fuzzy.cs.uni-magdeburg.de/~borgelt,2004年5月9日. 被引量:1

共引文献41

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部