期刊文献+

一种优化相关规则的发现方法 被引量:12

An Approach to Finding Optimized Correlated Association Rules
下载PDF
导出
摘要 提出了一种基于相关性的框架.在此框架内,使用残差分析来判断两项之间是否是独立的.残差分析可以使得我们很容易地获得包含负蕴含规则在内的真正的关联(而不是并发)规则,而且不需要指定支持度和可信度阈值.为了提高发现规则的质量,文中使用遗传算法来发现优化规则.在人工数据集和真实数据集上的实验结果表明文中的算法在发现规则的有趣性上优于类Apriori算法. This paper proposes a framework based on correlation. In this framework, residual analysis is used to determine whether two itemsets are independent of each other. The measure can help us find really correlated rules instead of concurrent ones. In addition, negatively correlated rules also can be found with residual analysis. Moreover, the support and confidence thresholds not have to be specified in the framework. To improve the quality of rules, the authors employ genetic algorithm to find optimized rules. By running the algorithm on synthetic and real datasets, the author argue that the algorithm outperform over Apriori-like algorithm on the interestingness of rules.
出处 《计算机学报》 EI CSCD 北大核心 2006年第6期906-913,共8页 Chinese Journal of Computers
基金 国家自然科学基金(60443003 60442002)资助
关键词 相关性 关联规则 优化规则 兴趣度 correlation association rule optimized rule interestingness
  • 引文网络
  • 相关文献

参考文献17

  • 1Agrawal R.,Imielinski T.,Swami A..Mining association rules between sets of items in large databases.In:Proceedings of the ACM SIGMOD,Washington,DC,1993,207~216 被引量:1
  • 2Omiecinski E.R..Alternative interest measures for mining associations in databases.IEEE Transactions on Knowledge and Data Engineering,2003,15(1):57~69 被引量:1
  • 3Srikant R.,Agrawal R..Mining generalized association rules.In:Proceedings of the 21th International Conference on Very Large Data Bases,Tokyo,Japan,1995,409~419 被引量:1
  • 4Srikant R.,Agrawal R..Mining quantitative association rules in large relational tables.In:Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data,Montreal,Quebec,Canada,1996,1~12 被引量:1
  • 5Tan Pang-Ning,Kumar V..Interestingness measures for association patterns:A perspective.Department of Computer Science and Engineering,University of Minnesota,Minneapolis,USA:Technical Report,2000 被引量:1
  • 6Brin S.,Motwani R.,Silverstein C..Beyond market baskets:Generalizing association rules to correlations.In:Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data,Tucson,Arizone,USA,1997,265~276 被引量:1
  • 7Ahmed K.M.,El-Makky N.M.,Taha Y..A note on beyond market baskets:Generalizing association rules to correlations.ACM SIGKDD Explorations Newsletter,2000,1(2):46~48 被引量:1
  • 8Cohen E.et al.Finding interesting associations without support Pruning.IEEE Transactions on Knowledge and Data Engineering,2001,13(1):64~78 被引量:1
  • 9Xiong Hui,Tan Pang-Ning,Kumar V..Mining strong affinity association patterns in data sets with skewed support distribution.In:Proceedings of the 3rd IEEE International Conference on Data Mining,Melbourne,Florida,2003,46~48 被引量:1
  • 10Savasere A.,Omiecinski E.,Navathe S..Mining for strong negative associations in a large database of customer transactions.In:Proceedings of the 14th International Conference on Data Engineering,Orlando,Florida,USA,1998,494~502 被引量:1

同被引文献84

引证文献12

二级引证文献34

;
使用帮助 返回顶部