期刊文献+

一种基于旋转超盒和引力场融合的聚类算法

A Novel Clustering Method Based-on Rotated Super-Box and Gravitation Fusion
下载PDF
导出
摘要 针对传统聚类算法处理复杂分布数据的不足,提出了一种新型的基于旋转超盒和引力场融合的聚类算法.该算法由1)数据集归一化;2)利用旋转超盒构造初始类别;3)借助引力场概念对初始类别进行融合3个步骤构成.仿真结果表明,该算法在无需聚类数目的情况下,对复杂分布数据具有很好的聚类效果. To the shortage of traditional clustering algorithm when dealing data with complicated distribution, a novel hierarchical clustering method based-on the rotated super-box and gravitation fusion(RBGFCA) is presented in this paper. This algorithm consists of three parts: (a)uniform for data; (b) constitution of initial patterns by rotated super-box; (c)fusion of initial patterns with gravitation. The simulation results show that compared to FCA, this algorithm has good clustering performance for data with complicated distribution without knowing the number of clustering.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第z1期250-254,共5页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展规划基金项目(2005CB231804)
关键词 旋转超盒 模糊C均值聚类算法(FCA) 引力场融合 rotated super-box fuzzy C-means algorithm(FCA) gravitation fusion
  • 相关文献

参考文献9

  • 1[1]边肇祺,张学工等.模式识别.北京:清华大学出版社,1999. 被引量:8
  • 2[2]蔡元龙.模式识别.西安:西安电子科技大学出版社,1992.56~126 被引量:3
  • 3[3]R N Dave.Fuzzy-shell clustering and applications to circle detection in digital images.Int'l Journal of General System,1995,16(4):343-355 被引量:1
  • 4[4]H Frigui,R Krishnapuram.A comparison of fuzzy shell-clustering method for the detection of ellipses.IEEE Trans on Fuzzy System,1996,4(2):193-199 被引量:1
  • 5[5]L J Hubert.Some applications of graph theory to clustering.Psychonmetrika,1974,39(3):283-309 被引量:1
  • 6[6]Liu Yu Tseng,Shiueng Bien Yang.A genetic algorithm for data with non-spherical-shape clusters.Pattern Recognition,2000,33(7):1251-1259 被引量:1
  • 7[7]Patrick K Simpson.Fuzzy min-max neural networks-Part1:Classification.IEEE Trans on Neural Networks,1992,3(5):776-787 被引量:1
  • 8黄晓斌,万建伟,张燕.面向非球形分布数据的自适应K近邻聚类算法[J].计算机工程,2003,29(11):21-22. 被引量:3
  • 9黄晓斌,马晓岩,薛林光,秦江敏.一种使用支撑集的区域型模糊聚类算法[J].系统工程与电子技术,2002,24(10):108-111. 被引量:2

二级参考文献9

  • 1蔡元龙.模式识别[M].西安:西安电子科技大学出版社,1992.67-69. 被引量:21
  • 2边肇祺.模式识别[M].清华大学出版社,1999.. 被引量:61
  • 3Baraldi F, Parmiggiani F. Fuzzy-shell Clustering and Applications to Circle Detection in Digital Images. Int. J. General Syst. 1995, 16:34-3. 被引量:1
  • 4Frigui H, Krishnapuram R. A Comparison of Fuzzy Shell-clustering Method for the Detection of Ellipses. IEEE Transactions on Fuzzy System, 1996, 4: 193-199. 被引量:1
  • 5Hubert L J. Some Applications of Graph Theory to Clustering.Psychonmetrika, 1974,38:435-475. 被引量:1
  • 6Tseng Liuyu, Yang Shiuengbien. A Genetic Algorithm for Data with Non-spherical-shape Clusters. Pattern Recognition ,2000,33:1251. 被引量:1
  • 7Simpson P K. Fuzzy Min-Max Neural Networks--Part1: Classification. IEEE Transactions On Neural Networks, 1992,3(5). 被引量:1
  • 8Gabrys B, Bargiela A. General Fuzzy Min-Max Neural Networks for Clustering and Classification. IEEE Transactions on Neural Networks,2000, 11 (3). 被引量:1
  • 9Yao Yuhui, Chen Lihui, Chen Yanqiu. Using Clustering Skeleton as Prototype for Data Labeling. IEEE Transactions on System,Man and Cybernetics--Part B:Cybernetics, 2000, 30(6). 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部