期刊文献+

数据流上基于K-median聚类的算法研究 被引量:3

Research on Algorithms for K-median Clustering over Data Streams
下载PDF
导出
摘要 文章研究和分析了数据流上的K-median聚类算法技术,包括:(1)流模型和K-median问题定义;(2)基于流的K-median聚类基本决策和内在机理;(3)理论上有性能保证的流算法。对于每一特征,这种技术能在没有实际保留任何数据流对象的情形下有效地确定聚类点。它通过一个聚类块的一分为二或相邻聚类块的合二为一来动态地生成聚类点,从而实现上述目标。作为结果,这种技术所确定的聚类点将比其他常规方法更准确。在数据流环境中,这种技术能够在产生高质量聚类结果的同时非常有效地执行。 K-median Technique that employs clustering algorithms for a data stream is studied and analyzed here, including: (1) the definition of stream model and k-median problem;(2) the fundamental decisions and inner mechanism of k-median clustering on streams;(3) streaming algorithms with theoretical performance guarantees. For each feature, its clusters can be effectively found upon without maintaining any object of the data stream physically. For the purpose, clusters are dynamically generated by splitting a cluster into two clusters or merging two adjacent clusters into one cluster. As a result, the studied technique can find clusters more correctly than other conventional methods. It can perform very efficiently in the data stream environment while producing clustering results of very high quality.
出处 《微电子学与计算机》 CSCD 北大核心 2006年第z1期190-192,共3页 Microelectronics & Computer
基金 福建省自然科学基金项目(A0410011) 福建省科技专项经费项目(2005K007)
关键词 数据流 K-Median聚类 算法 理念 Data stream, K-median clustering, Algorithm, Idea
  • 相关文献

参考文献4

  • 1[1]S Guha,R Motwani N Mishra,L O'Callaghan.Clustering data streams.In Proc.41th Annu.IEEE Sympos.Found.Comput.Sci.,2000:359~366 被引量:1
  • 2[2]O'Callaghan L,Mishra N,Meyerson A.Streaming-data algorithms for high-quality clustering[A].ICDE Conference,San Jose,California,USA,2002:685~699 被引量:1
  • 3[3]A Meyerson.Online facility location.Proc.ACM Symp.Foundations of Computer Science,2001. 被引量:1
  • 4[4]Datar M,Gionis A,Indyk P,Motwani R.Maintaining stream statistics over sliding windows.In:Eppstein D,ed.Proc.of the 13th Annual ACM-SIAM Symp.on Discrete Algorithms.San Francisco:ACM/SIAM,2002:635~644 被引量:1

同被引文献12

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部