期刊文献+

BW-Net:用于视网膜血管图像分割的W-Net扩展框架

BW-Net:A W-Net extension framework for retinal vascular image segmentation
下载PDF
导出
摘要 为了更准确地分割视网膜血管图像中的目标区域,提出了一种基于改进W-Net的网络BW-Net。该网络采用菱形结构融合的方式进行语义特征聚合,通过将含有菱形结构的部分逐层堆叠形成U型拓宽框架,并引入嵌套的密集跳跃连接形成最终模型。融合方案提高了特征图组合的灵活性,设计的跳跃连接减少了特征图之间的语义差距,从而减轻了优化器的学习压力,实现了更好的图像分割性能。使用DRIVE数据集验证了拟议网络的有效性。BW-Net在分割任务中获得的Dice相似性系数值、敏感性、特异性和准确性分别是76.86%、73.66%、99.12%和94.55%,比目前大部分的先进网络框架的输出表现较好,并且网络参数却得到了减少。结果证明了该扩展结构在视网膜血管图像分割性能上的改进。 To segment target regions in retinal blood vessel images more accurately,a network based on improved W-Net is proposed.The network uses diamond structure fusion for semantic feature aggregation by stacking the parts containing the diamond structure layer by layer to form a U-shaped widening framework and introducing nested dense jump connections to form the final model.The fusion scheme improves the flexibility of feature map combination,and the designed jump connections reduce the semantic gap between feature maps,thus reducing the learning pressure on the optimizer and achieving better image segmentation performance.The effectiveness of the proposed network is verified using the DRIVE dataset.The dice similarity coefficient values,sensitivity,specificity,and accuracy obtained by BW-Net in the segmentation task are 76.86%,73.66%,99.12%,and 94.55%,respectively,which perform better than the output of most of the current state-of-the-art network frameworks,and the network parameters are reduced.The results demonstrate the improvement of this extended structure in the performance of retinal vascular image segmentation.
作者 黎强 陈惠贤 Li Qiang;Chen Huixian(School of Mechanical and Electrical Engineering,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《电子测量技术》 北大核心 2023年第21期23-29,共7页 Electronic Measurement Technology
关键词 图像分割 视网膜血管 全卷积网络 image segmentation retinal vessels fully convolutional network
  • 相关文献

参考文献7

二级参考文献24

共引文献461

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部