摘要
为提高煤矸石的资源化利用率,将原状煤矸石块与活化煤矸石粉分别作为混凝土粗骨料和矿物掺合料制备煤矸石混凝土,分析了复掺原状煤矸石粗骨料、活化煤矸石粉下煤矸石混凝土的抗压强度、劈裂抗拉强度及抗氯离子渗透性能的变化,采用压汞法、氮吸附法及扫描电镜(SEM)探究不同活化煤矸石粉(CGP)取代率下煤矸石混凝土微观结构的变化规律。研究结果表明:CGP在适配取代率下可以提高煤矸石混凝土的抗压强度、劈裂抗拉强度及抗氯离子渗透性能;CGP通过二次水化反应生成C-S-H凝胶,填充了煤矸石混凝土原充水空间的孔隙裂缝,使煤矸石混凝土内部的有害孔减少,无害孔增加,孔隙率降低,进而提高了砂浆内部及砂浆与煤矸石粗骨料界面过渡区的密实度。
To improve the resource utilization of the coal gangue,original coal gangue block and activated coal gangue powder were used to prepare coal gangue concrete as coarse aggregate and mineral admixture respectively.The compressive strength,the splitting tensile strength and the chloride penetration resistance of the prepared coal gangue concrete were analyzed.Mercury injection method,nitrogen adsorption method and scanning electron microscope(SEM)were used to explore the changes of the microstructure of the coal gangue concrete with different content of activated coal gangue powder(CGP).The research results show that CGP can improve the compressive strength,the splitting tensile strength and the chloride penetration resistance of the coal gangue concrete;CGP generates C-S-H gel through secondary hydration reaction,which fills the pore cracks in the original water-filled space of the coal gangue concrete,reduces in the number of harmful pores,increases in the number of harmless pores,and reduces in porosity,accordingly leading to the increase of the density of mortar and the interfacial transition zone between mortar and coal gangue coarse aggregate.
作者
阎杰
单豆豆
邢国斌
王啸天
刘兴隆
谢军
YAN Jie;SHAN Doudou;XING Guobin;WANG Xiaotian;LIU Xinglong;XIE Jun(School of Civil Engineering,Hebei University of Architecture,Zhangjiakou 075000,China;Hebei University Green Building Materials and Building Transformation Application Technology Research and Development Center,Zhangjiakou 075000,China)
出处
《辽宁工程技术大学学报(自然科学版)》
CAS
北大核心
2023年第3期266-273,共8页
Journal of Liaoning Technical University (Natural Science)
基金
河北省教育厅自然科学重点项目(ZD2021041)
河北省科技厅科技支撑计划项目(20373802D)
关键词
煤矸石
矿物掺合料
力学强度
抗氯离子渗透
孔结构
coal gangue
mineral admixtures
mechanical strength
chloride penetration resistance
pore structure