期刊文献+

物联网环境下舰船监控网络高维异常数据挖掘方法 被引量:1

Data mining method for high-dimensional abnormal data of ship monitoring network in the environment of internet of things
下载PDF
导出
摘要 为了准确识别物联网环境下舰船监控网络高维异常数据,针对当前识别方法存在的误差大、速度慢等不足,提出一种物联网环境下舰船监控网络高维异常数据挖掘方法。首先分析当前物联网环境下舰船监控网络高维异常数据识别的研究现状,指出各种方法的局限性,然后结合舰船监控网络异常数据的高维特点,引入解决了"维数灾"问题的支持向量机对舰船监控网络高维异常数据进行挖掘,找到舰船监控网络异常数据的变化趋势,最后通过仿真实验分析了其有效性和优越性。结果表明,本文方法提高了舰船监控网络高维异常数据识别正确率,误识率明显下降,减少了舰船监控网络高维异常数据识别时间,可以对大规模舰船监控网络高维异常数据进行处理,具有广泛的应用前景。 In order to accurately identify the high-dimensional abnormal data of warship monitoring network in the Internet of Things,a data mining method of high-dimensional abnormal data of warship monitoring network in the Internet of Things is proposed to solve shortcomings of current identification methods,such as errors and slow speed.Firstly,the current research status of high-dimensional abnormal data recognition in ship monitoring network under the Internet of Things is analyzed,Then,combined with high-dimensional characteristics of abnormal data in ship monitoring network,support vector machine is introduced to solve problem of"dimension disaster"to mine high-dimensional abnormal data in ship monitoring network.Finally,the effectiveness and superiority of the proposed method are analyzed by simulation experiments.The results show that the proposed method can improve recognition accuracy of high-dimensional anomalous data in ship monitoring network,and significantly reduce recognition time of high-dimensional anomalous data in ship monitoring network.It can process high-dimensional anomalous data in large-scale ship monitoring network and has a wide application prospect.
作者 李洪波 LI Hong-bo(School of Information and Electrical Engineering,Ludong University,Yantai 264025,China)
出处 《舰船科学技术》 北大核心 2019年第20期154-156,共3页 Ship Science and Technology
基金 山东省自然科学基金面上项目(ZR2010GM013).
关键词 物联网 舰船监控网络 异常数据 高维特性 internet of things ship monitoring network abnormal data high-dimensional characteristics
  • 相关文献

参考文献5

二级参考文献39

  • 1Li Haifeng,Jiang Tao,Zhang Keshu.Efficient and Robust Feature Extraction by Maximum Margin Criterion[J].IEEE Transactions on Neural Networks.2006,17(1):157-165. 被引量:1
  • 2Lanckriet G R G,Ghaoui L E,Bhattacharyya C,et al.A Robust Minimax Approach to Classification[J].The Journal of Machine Learning Research,2002,25(3): 555-582. 被引量:1
  • 3Blake C L,Merz C J.UCI Repository of Machine Learning Databases[EB/OL].(1998-05-01).http://www.ics.uci.edu/mlearn/ MLRepository.html. 被引量:1
  • 4Hettich S,Bay S D.KDD CUP 1999 Data[EB/OL].(1999-10-28).http://kdd.ics.uci.edu/databases/kddcup99/kddcup.html. 被引量:1
  • 5MERZ CJ, MERPHY P. UCI repository of machine learning databases[ EB/OL]. http://www. ics. uci. edu/mlearn/MLRRepository. html, 2004. 被引量:1
  • 6LI XY. Clustering and classification algorithm for computer intrusion detection[ M]. Ph D, thesis, Arizona state university, 2001. 被引量:1
  • 7ELKAN C. Results of the KDD'99 Classifier Learning Contest[ EB/OL]. http://www. cs. ucsd. edu/users/ elkan/clresults. html,2004. 被引量:1
  • 8HAWKINS D. Identification of Outliers[ M]. Chapman and Hall,London, 1980. 被引量:1
  • 9BARNETT V, LEWIS T. Outliers in statistical data[ M]. John Wiley, 1994. 被引量:1
  • 10BICKEL DR. Robust estimators of the mode and skewness of continuous data[ J]. Computational Statistics and Data Analysis, 2002, 39(2): 153 - 163. 被引量:1

共引文献37

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部