期刊文献+

基于深度学习的水电站地下厂房智能通风调控研究

下载PDF
导出
摘要 水电行业由于自身环境的限制,广泛采用地下厂房。这些地下厂房的通风状况会对发电过程产生较大的影响,然而现有通风控制模式较难达到最佳环境参数,经常会出现局部高温、潮湿、空气质量差等问题。针对以上问题,本文提出了一种基于深度学习的水电站地下厂房智能通风调控方法。使用传感器采集地下厂房重要测点的温湿度与气流组织数据,将风机的启停状态、通风量和传感器数据作为神经网络的输入数据,将气流组织等数据作为输出数据,最后将训练好的网络模型应用于水电站地下厂房的智能通风调控中。通过理论分析及水电站地下厂房实际应用,验证了本文所提方法的有效性,为水电站地下厂房的通风管理提出了新的思路及解决办法。
出处 《暖通空调》 2023年第S01期254-257,共4页 Heating Ventilating & Air Conditioning
  • 相关文献

参考文献16

二级参考文献97

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部