摘要
近年来,随着社交网络的兴起,微博自媒体对舆情演变发挥着越来越重要的作用,也给公众舆论管理带来了新的挑战。本文针对微博舆情监控的实际需求,结合自然语言处理技术,设计并实现了基于爬虫和文本处理的微博舆情分析系统,实现多线程爬虫、多维度数据分析,并进行可视化展示。该系统可定向搜索某一社会热点话题,帮助用户全面了解网民情感态度,把握舆情发展动态。
In recent years,with the rise of social networking,We-Media based on the Weibo platform plays an increasingly important role in the evolution of public opinion,bringing new challenges to public opinion management.According to the practical demands of Weibo public opinion monitoring,a Weibo public opinion analysis system based on crawler and text processing is designed and implemented by combining natural language processing technology,where multi-threaded crawler,multi-dimensional data analysis and visual display are achieved.With this system,a certain social focus could be searched orientationally,which helps customers comprehensively capture the sentiment attitudes of online users and grasp the tendency of public opinion.
作者
刘子谦
王志强
LIU Ziqian;WANG Zhiqiang(Beijing Electronic Science and Technology Institute,Beijing 100070,P.R.China;State Information Center,Beijing 100045,P.R.China)
出处
《北京电子科技学院学报》
2020年第3期31-39,共9页
Journal of Beijing Electronic Science And Technology Institute
基金
信息网络安全公安部重点实验室开放课题项目资助(No.C19614)
中国博士后科学基金面上项目(2019M650606)
关键词
网络爬虫
自然语言处理
舆情监控
数据可视化
web crawler
natural language processing
public opinion monitoring
data visualization