期刊文献+

BP神经网络结合遗传算法多目标优化秦皮提取工艺的研究 被引量:17

Back-propagation neural network and genetic algorithm for multi-objective optimization of extraction technology of Cortex Fraxini.
下载PDF
导出
摘要 目的:使用BP神经网络结合遗传算法用于秦皮提取工艺的多目标优化。方法:以秦皮甲素和秦皮乙素为指标,采用均匀设计法优化BP神经网络模型参数,并建立网络模型,再利用遗传算法对网络进行多目标寻优,获得秦皮的最佳提取工艺。结果:得到的最优工艺条件为提取温度99℃、乙醇体积分数50%、液固比7、提取时间94 min,网络在此条件下的预测值为秦皮甲素提取量为9.617 mg.g-1,秦皮乙素提取量为2.195 mg.g-1,和实际测量值的相对误差仅为-1.16%和-5.14%,具有较好的网络预测性。结论:BP神经网络结合遗传算法可用于秦皮提取工艺的多目标优化。 Objective: To introduce Back-propagation (BP) neural network and genetic algorithm for multi-objective optimization of extraction technology of Cortex Fraxini. Method: BP neural network was established and optimized with uniform design. Genetic algotithm was used for multi-objective optimization of extraction technology of cortex fraxini. Result: the optimization of extraction was as follows : extraction temperature was 99 ℃, concentration of EtOH was 50%, liquid-solid ratio was 7, extraction time was 94 min. The proportional error between predictive value and practical measured value was just - 1.16% and - 5.14%. Conclusion: Back-propagation neural network and genetic algorithm for multi-objective optimization of extraction technology of cortex fraxini is advisable.
出处 《中国中药杂志》 CAS CSCD 北大核心 2008年第22期2622-2626,共5页 China Journal of Chinese Materia Medica
关键词 秦皮 提取工艺 均匀设计 BP神经网络 遗传算法 多目标优化 Cortex Fraxini extraction technology uniform design method back-propagation (BP) neural network genetic algorithm multi-objective optimization
  • 相关文献

参考文献10

二级参考文献30

共引文献115

同被引文献192

引证文献17

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部