期刊文献+

一种基于遗传算法的关联规则改进方法 被引量:1

Improved mining method for association rules based on genetic algorithm
下载PDF
导出
摘要 在对关联规则冗余问题产生机理分析的基础上,提出了针对于支持度阀值设置的惩罚函数和一个改进的遗传算法。该改进算法采用了频繁项分布、素因子编码、择偶和共享函数等新颖技术,使染色体总是能在频繁项密集区进行挖掘,从而对组合搜索空间进行了有效修剪。并且对事务进行了数值转换,有效地压缩了事务数据库存储空间,提高了运算速度。从实验效果来看,改进的挖掘方法在发现有价值规则的效率与精准率方面具有一定优势。 This paper proposes the penalty function by setting support threshold and an improved genetic algorithm, based on the mechanism analysis of redundancy problem production. The algorithm makes chromosome always mining in the concentrated area of frequent item by using some new technologies such as frequent item distribution, primes factor coding, spouse and sharing function, and thus combination space is validly pruned. Moreover, because the numerical conversion is used for the transaction, the storage space of transaction database is validly compressed and the operation speed is improved. Experiment results show that the improved mining method of the paper has certain advantage on the efficiency and precision of finding the valuable rules.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第14期155-158,165,共5页 Computer Engineering and Applications
关键词 关联规则 遗传算法 频繁项分布 素因子编码 择偶 association rules genetic algorithm frequent item distribution primes factor coding spouse
  • 相关文献

参考文献15

  • 1Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [C]//Pruceedings of the ACM SIG- MOD, Washington DC ,1993:207-216. 被引量:1
  • 2Han J, Jian P. Mining frequent patterns without candidate generation [C]//Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas,TX,2000 : 1-12. 被引量:1
  • 3Jr Bayardo J R. Efficiently mining long patterns from databases [ C]//Ashutosh Tiwary,Boeing Co. Proc of the 1998 ACM SIGMOD International Conference on Management of Data( SIGMOD' 98 ). New York : ACM Press,1998:85-93. 被引量:1
  • 4Hoppner F. Learning temporal rules from state sequences [ C ]//IJCAI Workshop on Learning from Temporal and Spatial Data, Seatle ,2001. 被引量:1
  • 5曾海泉,刘永丹,宋扬,胡运发.基于互关联后继树的多时间序列关联模式挖掘[J].计算机研究与发展,2003,40(7):934-940. 被引量:5
  • 6Chen B, Haas P, Scheuermann P. A new two-phase sampling based algorithms for discovery association rules [ C ]//Proceedings of the ACM SIGKDD' 02, Edmonton, Alberta, Canada,2002:462-468. 被引量:1
  • 7Bronnimann H, Chen B, Dash M, et al. Efficient data reduction with EASE [ C ]//Proceedings of the ACM SIGKDD'03 ,Washington D C, 2003 : 59 -68. 被引量:1
  • 8贺志,黄厚宽,田盛丰.一种优化相关规则的发现方法[J].计算机学报,2006,29(6):906-913. 被引量:12
  • 9Omiecinski E R. Alternative interest measures for mining association in databases [ J ]. IEEE Transactions on Knowledge and Data Engineering,2003,15( 1 ) :57-69. 被引量:1
  • 10Srikant R, Agrawal R. Mining generalized association rules [ C]// Proceedings of the 21 st International Conference on Very Large Data Bases ,Tokyo ,Japan, 1995:409-419. 被引量:1

二级参考文献50

  • 1熊磊,李元香.网格计算资源调度策略的三级模式[J].计算机工程与应用,2005,41(1):96-97. 被引量:8
  • 2袁磊,张浩,陆剑峰,陈静.数据网格中数据交互处理模式研究[J].计算机工程与应用,2005,41(15):133-137. 被引量:1
  • 3胡运发.互关联后继树——一种新型全文数据库数学模型,技术报告:CIT-02—3[R].复旦大学计算机与信息技术系,2002.. 被引量:1
  • 4贾彩燕 倪现君.关联规则挖掘研究述评[J].计算机科学,2003,30(4):145-148. 被引量:13
  • 5H Mannia, H Toivonen. Discovering generalized episodes using minimal occurrences. The 2nd Int'l Conf on Knowledge Discovery and Data Mining (KDD'96), Portland, Oregon, 1996. 被引量:1
  • 6Y Huhtala, J Kaerkkaeinen, H Toivonen. Mining for similarities in aligned time series using wavelets. Data Mining and Knowledge Discovery: Theory, Tools and Technology, 1999, 3695: 150-160. 被引量:1
  • 7T C Fu, F L Chung, R Luk et al. Pattern discovery from stock time series using self-organizing maps. Knowledge Discovery and Data Minining (KDD)2001 Workshop on Temporal Data Mining,San Francisco, 2001. 被引量:1
  • 8D Gautam, L King, M Heikki et al. Rule discovery from time series. The 4th Int'l Conf on Knowledge Discovery and Data Mining (KDD), San Francisco, 1998. 被引量:1
  • 9Frank Hoppner. Learning temporal rules from state sequences.IJCAI Workshop on Learning from Temporal and Spatial Data,Seatle, 2001. 被引量:1
  • 10R Agrawal, T Imielinski, A Swami. Mining association rules sets of items in large databases. The ACM SIGMOD Conf on Management of Data (SIGMOD'93), Washington, DC, 1993. 被引量:1

共引文献22

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部