摘要
伪Newton-δ族算法对一般目标函数的收敛性赵云彬(中国科学院应用数学研究所)段虞荣(重庆大学系统科学与工程研究所)CONVERGENCEOFTHEPSEUDO-NEWTON-δCLASSMETHODSFORGENERALOBJECTIVEFUNC...
Abstract Pesudo-Newton-δ class methods are new algorithms for unconstrained optimization. If the algorithms use inexact line searches (Goldstein rule), these methods are globally convergent when applied to a general objective function, and are locally super-linearly convergent when applied to a uniformly convex function whose Hessian matrix G (x) is Lipschitz continuous in the neighborhood of the optimal solution.
出处
《数值计算与计算机应用》
CSCD
北大核心
1996年第1期36-37,共2页
Journal on Numerical Methods and Computer Applications