In this paper, we report that diisopropyl phosphoryl amino acid could be prepared with reasonable yields under solvent-free condition by adding amino acid to the mixture of diisopropyl phosphite and N-chlorodiisopropy...In this paper, we report that diisopropyl phosphoryl amino acid could be prepared with reasonable yields under solvent-free condition by adding amino acid to the mixture of diisopropyl phosphite and N-chlorodiisopropylamine.展开更多
With introduction of a diisopropyloxy phosphoryl group into the N terminal of amino acids, it was found that proton affinity (PA) of amino acid was enhanced in mass spectrometry. Density functional theory calculation...With introduction of a diisopropyloxy phosphoryl group into the N terminal of amino acids, it was found that proton affinity (PA) of amino acid was enhanced in mass spectrometry. Density functional theory calculations showed that the energy for protonation of DIPP-amino acid is lower than that of amino acid, which means PA of DIPP-AA is higher than that of corresponding amino acid. These results, coincident with our empirical results, offer a useful interpretation of experimental observations.展开更多
基金the National Natural Science Foundation of china (Grand No.20132020) for financial support the Ministry of Science and Technology the Chinese Ministry of Education and Tsinghua University
文摘In this paper, we report that diisopropyl phosphoryl amino acid could be prepared with reasonable yields under solvent-free condition by adding amino acid to the mixture of diisopropyl phosphite and N-chlorodiisopropylamine.
基金the National Natural Science Foundation of China (No. 20175026) the Ministry of Science and Technology of China the Education Ministry of China and Tsinghua University for financial support.
文摘With introduction of a diisopropyloxy phosphoryl group into the N terminal of amino acids, it was found that proton affinity (PA) of amino acid was enhanced in mass spectrometry. Density functional theory calculations showed that the energy for protonation of DIPP-amino acid is lower than that of amino acid, which means PA of DIPP-AA is higher than that of corresponding amino acid. These results, coincident with our empirical results, offer a useful interpretation of experimental observations.