Due to their inherent safety, low cost, and structural stability, TiO2 nanostructures represent a suitable choice as anode materials in sodiumion batteries. In the recent years, various hypotheses have been proposed r...Due to their inherent safety, low cost, and structural stability, TiO2 nanostructures represent a suitable choice as anode materials in sodiumion batteries. In the recent years, various hypotheses have been proposed regarding the actual mechanism of the reversible insertion of sodium ions in the TiO2 structure, and previous reports are often controversial in this respect. Interestingly, when tested as binder- and conducting additive-free electrodes in laboratory-scale sodium cells, amorphous and crystalline (anatase) TiO2 nanotubular arrays obtained by simple anodic oxidation exhibit peculiar and intrinsically different electrochemical responses. In particular, after the initial electrochemical activation, anatase TiO2 shows excellent rate capability and very stable long-term cycling performance with larger specific capacities, and thus a clearly superior response compared with the amorphous counterpart. To obtain deeper insight, the present materials are thoroughly characterized by scanning electron microscopy and ex situ X-ray diffraction, and the insertion of sodium ions in the TiO2 bulk phases is systematically modeled by density functional theory calculations. The present results may contribute to the development of more systematic screening approaches to identify suitable active materials for highly efficient sodium-based energy storage systems.展开更多
We discuss a novel window to probe the origin of our universe via the mass functions of primordial black holes(PBHs).The mass functions of PBHs are simply estimated using the conventional Press-Schechter formalism for...We discuss a novel window to probe the origin of our universe via the mass functions of primordial black holes(PBHs).The mass functions of PBHs are simply estimated using the conventional Press-Schechter formalism for two paradigms of cosmic origin,including inflationaryΛCDM and bounce cosmology.The standard inflationaryΛCDM model cannot generate an appreciable number of massive PBHs;however,non-trivial inflation models with blue-tilted power spectra at small scales and matter bounce cosmology provide formation mechanisms for heavy PBHs,which in turn,may seed the observed supermassive black holes(SMBHs).By fitting the SMBH mass functions at high redshift(z~6)derived from Sloan Digital Sky Survey(SDSS)and Canada-France High-z Quasar Survey(CFHQS)quasars,for two paradigms of cosmic origin,we derive constraints on the PBH density fraction fPBHat z~6 and the characteristic mass M_(★),with the prior assumption that all SMBHs stem from PBHs.We demonstrate that this newly proposed procedure,relying on astronomical measurements that utilize deep-field surveys of SMBHs at high redshift,can be used to constrain models of cosmic origin.Additionally,although not the main focus of this paper,we evolve the mass function from z~6 to z~0 through an assumption of 3×10^(8)-year Eddington’s accretion,and give a rough estimation of fPBHat z~0.展开更多
The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tec...The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscopy (SEM) was used to characterize the AA7075-T6 surface. Silicate can significantly reduce corrosion deterioration and the inhibition efficiency increases with the concentration of Na<sub>2</sub>SiO<sub>3</sub>. The corrosion inhibition mechanism involves the formation of a protective film over the alloy surface by adsorption of aluminosilicate anions from solution, as has also been suggested by others in literature.展开更多
From experime nts, the influe nee of the physical characteristics of different bin ary mixtures of solids on the spouting regime of a pyramidal square-based spouted bed reactor is assessed. The applied methodology per...From experime nts, the influe nee of the physical characteristics of different bin ary mixtures of solids on the spouting regime of a pyramidal square-based spouted bed reactor is assessed. The applied methodology permits a more precise evaluation of the effects of the tested variables (diameter, density, sphericity) on the response variables (minimum air flows at which spouting begins and at which to maintain spouting con ditions). The associated pressure drops along the bed of particles a nd the height of the formed fountai n are analysed in each case. During the initial stages of fluidisation, binary mixtures containing different density ratios show dead zones. Segregation becomes more evident at large-size and high-density ratios. The lack of sphericity was found to be the main reason leading to blocking, channelling, and start-up problems when system failures occur. Nevertheless, the extent of segregation in all cases decreases with increasing the spouting velocity. In addition, a computational fluid dynamic model based on the discrete element method, previously validated for a single solid bed, is proposed as a tool to predict and evaluate potential segregation phenomena in binary mixtures. This model reproduced with high accuracy the encountered segregation phenomena. Its use may help define the technical limts inherent in the pyramidal spouted bed reactor.展开更多
An historical collection of more than one hundred samples of minerals and ore, used in the second half of the XVIII century was found and acquired during Munich Mineralientage 2014. The samples contained in numbered g...An historical collection of more than one hundred samples of minerals and ore, used in the second half of the XVIII century was found and acquired during Munich Mineralientage 2014. The samples contained in numbered glass vials but lacking description, were prepared for teaching purpose about determinative mineralogy and ore recognition. All samples were analysed and identified. The identification effort drove the authors along a historical excursus about the didactics of mineralogy and the dry method analysis, nowadays neglected.展开更多
It is well known that the safety and efficacy profile of an inhaled cortocosteroid(ICS) is influenced by the pharmacokinetic properties and associated pharmacodynamic effects of the drug. Freely circulating,protein un...It is well known that the safety and efficacy profile of an inhaled cortocosteroid(ICS) is influenced by the pharmacokinetic properties and associated pharmacodynamic effects of the drug. Freely circulating,protein unbound, and active ICS can cause systemic adverse effects. Therefore, a detailed investigation of drug-protein interaction could be of great interest to understand the pharmacokinetic behaviour of corticosteroids and for the design of new analogues with effective pharmacological properties. In the present work, the interaction between some corticosteroids and human serum albumin(HSA) has been studied by spectroscopic approaches. UV–Vis spectroscopy confirmed that all the investigated corticosteroids can bind to HSA forming a protein-drug complex. The intrinsic fluorescence of HSA was quenched by all the investigated drugs, which was rationalized in terms of a static quenching mechanism. The thermodynamic parameters determined by the Van't Hoff analysis of the binding constants(negative ΔH and ΔS values) clearly indicate thathydrogen bonds and van der Waals forces play a major role in the binding process between albumin and betamethasone, flunisolide and prednisolone, while hydrophobic forces may play a major role in stabilizing albumin-triamcinolone complexes.展开更多
Highly mesoporous Zn O and g-Al2O3nanowires(NWs) are both synthesized by a hydrothermal method using commercially available porous anodic aluminium oxide(AAO) as template. AAO membrane acts as template for Zn O NW...Highly mesoporous Zn O and g-Al2O3nanowires(NWs) are both synthesized by a hydrothermal method using commercially available porous anodic aluminium oxide(AAO) as template. AAO membrane acts as template for Zn O NWs and both as template and precursor for g-Al2O3 NWs. The formation of intermediate phases of porous Zn6Al2(OH)16CO3and boehmite(g-Al OOH) were observed, both occurring during the hydrothermal synthesis of porous Zn O and g-Al2O3 NWs, respectively, and disappearing after annealing at 600 C. This novel template-assisted hydrothermal process leads to the formation of porous Zn O and g-Al2O3NWs(specific surface area of 192 m2 g 1and 263 m2 g 1, respectively), showing pore sizes around 4 nm in diameter. The influence of the reaction parameters on the nanostructure morphology was also investigated. A Zn O seed layer, deposited on the AAO channels prior to the hydrothermal synthesis, leads to more compact Zn O nanowires(99 m2 g-1) protecting the AAO host from the chemical attack of the precursor solution.展开更多
Quantum entanglement and squeezing have significantly improved phase estimation and imaging in interferometric settings beyond the classical limits.However,for a wide class of non-interferometric phase imaging/retriev...Quantum entanglement and squeezing have significantly improved phase estimation and imaging in interferometric settings beyond the classical limits.However,for a wide class of non-interferometric phase imaging/retrieval methods vastly used in the classical domain,e.g.,ptychography and diffractive imaging,a demonstration of quantum advantage is still missing.Here,we fill this gap by exploiting entanglement to enhance imaging of a pure phase object in a non-interferometric setting,only measuring the phase effect on the free-propagating field.This method,based on the so-called"transport of intensity equation",is quantitative since it provides the absolute value of the phase without prior knowledge of the object and operates in wide-field mode,so it does not need time-consuming raster scanning.Moreover,it does not require spatial and temporal coherence of the incident light.Besides a general improvement of the image quality at a fixed number of photons irradiated through the object,resulting in better discrimination of small details,we demonstrate a clear reduction of the uncertainty in the quantitative phase estimation.Although we provide an experimental demonstration of a specific scheme in the visible spectrum,this research also paves the way for applications at different wavelengths,e.g.,X-ray imaging,where reducing the photon dose is of utmost importance.展开更多
Among spatial interpolation techniques,geostatistics is generally preferred because it takes into account the spatial correlation between neighbouring observations in order to predict attribute values at unsampled loc...Among spatial interpolation techniques,geostatistics is generally preferred because it takes into account the spatial correlation between neighbouring observations in order to predict attribute values at unsampled locations.A doline of approximately 15 000 m 2 at 1 900 m above sea level (North Italy) was selected as the study area to estimate a digital elevation model (DEM) using geostatistics,to provide a realistic distribution of the errors and to demonstrate whether using widely available secondary data provided more accurate estimates of soil pH than those obtained by univariate kriging.Elevation was measured at 467 randomly distributed points that were converted into a regular DEM using ordinary kriging.Further,110 pits were located using spatial simulated annealing (SSA) method.The interpolation techniques were multi-linear regression analysis (MLR),ordinary kriging (OK),regression kriging (RK),kriging with external drift (KED) and multi-collocated ordinary cokriging (CKmc).A cross-validation test was used to assess the prediction performances of the different algorithms and then evaluate which methods performed best.RK and KED yielded better results than the more complex CKmc and OK.The choice of the most appropriate interpolation method accounting for redundant auxiliary information was strongly conditioned by site specific situations.展开更多
Sodium potassium niobate (KNN) (K0.5Na0.5NbO3) nanopowder with a mean particle size of about 20 - 30 nm was synthesized by wet chemical route using Nb2O5 as Nb source. A solution of K, Na and Nb cations was prepared, ...Sodium potassium niobate (KNN) (K0.5Na0.5NbO3) nanopowder with a mean particle size of about 20 - 30 nm was synthesized by wet chemical route using Nb2O5 as Nb source. A solution of K, Na and Nb cations was prepared, which resulted in a clear gel after the thermal treatment. Phase analysis, microstructure and morphology of the powder were determined by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The obtained gel was first analyzed by Thermo Gravimetric Analyzer (TGA) and Differential Scanning Calorimetry (DSC), and then calcined at different temperatures of 400℃, 500℃, 600℃ and 700℃. The X-Ray Diffraction (XRD) patterns of the synthesized samples confirmed the formation of the orthorhombic crystal phase of K0.5Na0.5NbO3 at 500?C, a temperature significantly lower than that typically used in the conventional mixed oxide route. The process developed in this work is convenient to realize the mass production of KNN nanopowders at low cost and suitable for various industrial applications.展开更多
Electron beam melting(EBM) process is an additive manufacturing process largely used to produce complex metallic components made of high-performance materials for aerospace and medical applications.Especially,lattice ...Electron beam melting(EBM) process is an additive manufacturing process largely used to produce complex metallic components made of high-performance materials for aerospace and medical applications.Especially,lattice structures made by Ti-6A1-4V have represented a hot topic for the industrial sectors because of having a great potential to combine lower weights and higher performances that can also be tailored by subsequent heat treatments.However,the little knowledge about the mechanical behaviour of the lattice structures is limiting their applications.The present work aims to provide a comprehensive review of the studies on the mechanical behaviour of the lattice structures made of Ti-6A1-4V.The main steps to produce an EBM part were considered as guidelines to review the literature on the lattice performance:(1) design,(2) process and(3) post-heat treatment.Thereafter,the correlation between the geometrical features of the lattice structure and their mechanical behaviour is discussed.In addition,the correlation among the mechanical performance of the lattice structures and the process precision,surface roughness and working temperature are also reviewed.An investigation on the studies about the properties of heat-treated lattice structure is also conducted.展开更多
Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applicati...Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms.展开更多
In the present work, carbon nano/microparticles obtained by controlled pyrolysis of peanut (PS) and hazelnut (HS) shells are presented. These materials were characterized by Raman spectroscopy and field emissionsc...In the present work, carbon nano/microparticles obtained by controlled pyrolysis of peanut (PS) and hazelnut (HS) shells are presented. These materials were characterized by Raman spectroscopy and field emissionscanning electron microscopy (FE-SEM). When added to cement paste, up to 1 wt%, these materials led to an increase of the cement matrix flexural strength and of toughness. Moreover, with respect to plain cement, the total increase in electromagnetic radiation shielding effect when adding 0.5 wt% of PS or HS in cement composites is much higher in comparison to the ones reported in the literature for CNTs used in the same content.展开更多
Free organic solvent ink containing graphite, carboxymethyl cellulose and microfibrillated cellulose as active material, dispersing and binder, respectively, has been formulated to produce flexible and eco- sustainabl...Free organic solvent ink containing graphite, carboxymethyl cellulose and microfibrillated cellulose as active material, dispersing and binder, respectively, has been formulated to produce flexible and eco- sustainable electrodes for lithium ion batteries. Content ratio of components and dispersion protocol were tailored in order to have theological properties suitable for a large and cheap manufacturing process as well as screen printing. The bio-sourced printed electrodes exhibit a high porosity value of 70% that limits the electrochemical performances. However, the calendering process enhances electrode performances by increasing the reversible capacity from 85 until 315 mAh/g and reducing porosity to an optimal value of 34%. Moreover the introduction of 2% w/w of monofluoro-ethylene carbonate in the electrolyte reduced their reversible capacity loss of 11% in the printed electrode.展开更多
In many optical applications,there is an increasing need for dynamically tunable optical elements that are able to shape the wavefront of light‘on demand’.In this work,an elastomeric easy-to-fabricate optical elemen...In many optical applications,there is an increasing need for dynamically tunable optical elements that are able to shape the wavefront of light‘on demand’.In this work,an elastomeric easy-to-fabricate optical element whose transmission functions can be reversibly phase configured by visible light is demonstrated.The light responsivity of proper azopolymers incorporated within an elastomeric matrix is exploited to induce a light-controlled graded refractive index(GRIN)distribution within the bulk compound.The induced refractive index distribution is continuous and conformal to the intensity profile of the illumination at moderate power.A 100mW doubled-frequency Nd:YAG Gaussian beam focused to a 650μm waist is shown to induce a maximum relative refractive index change of~0.4%in the elastomeric matrix,with an approximately parabolic profile.The restoring characteristics of the elastomeric matrix enable full recovery of the initial homogeneous refractive index distribution within a few seconds when the incident laser is switched off.As an exemplary application,the configurable GRIN element is used in a microscope-based imaging system for light control of the effective focal length.展开更多
In this study,the mechanical properties of glass scaffolds manufactured by robocasting are investigated through micro computed tomography(/x-CT)based finite element modeling.The scaffolds are obtained by printing fibe...In this study,the mechanical properties of glass scaffolds manufactured by robocasting are investigated through micro computed tomography(/x-CT)based finite element modeling.The scaffolds are obtained by printing fibers along two perpendicular directions on parallel layers with a 90°tilting between two adjacent layers.A parametric study is first presented with the purpose to assess the effect of the major design parameters on the elastic and strength properties of the scaffold;the mechanical properties of the 3D printed scaffolds are eventually estimated by using the\i-CT data with the aim of assessing the effect of defects on the final geometry which are intrinsic in the manufacturing process.The macroscopic elastic modulus and strength of the scaffold are determined by simulating a uniaxial compressive test along the direction which is perpendicular to the layers of the printed fibers.An iterative approach has been used in order to determine the scaffold strength.A partial validation of the computational model has been obtained through comparison of the computed results with experimental values presented in[10]on a ceramic scaffold having the same geometry.All the results have been presented as non-dimensional values.The finite element analyses have shown which of the selected design parameters have the major effect on the stiffness and strength,being the porosity and fiber shifting between adjacent layers the most important ones.The analyses carried out on the basis of the/x-C7 data have shown elastic modulus and strength which are consistent with that found on ideal geometry at similar macroscopic porosity.展开更多
The geographical location makes the port of Livorno one of the most important in Italy. The port, in fact, benefits of an extended network of roads and rails connecting it with the rest of Italy, and central and south...The geographical location makes the port of Livorno one of the most important in Italy. The port, in fact, benefits of an extended network of roads and rails connecting it with the rest of Italy, and central and southern Europe as well. The history of Livorno and its port is inextricably linked to that of Pisa and Florence, and to the complexity of events that determined the political set-up of the region along several centuries. Looking at the new port plan of Livorno has made it necessary an extensive overview of the history of both the port, and of its planning. This analysis has allowed: to understand the reason for the different choices made in the past for the development of the port, highlighting, when necessary, the errors made; to identify the strengths and weaknesses of the existing port infrastructure; to identify the works needed to boost the port in the European context. The purpose of this paper is to provide a summary of the analysis performed for the implementation of the new Livorno port plan 2010 and show how the port planning in Italy is often conditioned by hundreds of centuries of history.展开更多
文摘Due to their inherent safety, low cost, and structural stability, TiO2 nanostructures represent a suitable choice as anode materials in sodiumion batteries. In the recent years, various hypotheses have been proposed regarding the actual mechanism of the reversible insertion of sodium ions in the TiO2 structure, and previous reports are often controversial in this respect. Interestingly, when tested as binder- and conducting additive-free electrodes in laboratory-scale sodium cells, amorphous and crystalline (anatase) TiO2 nanotubular arrays obtained by simple anodic oxidation exhibit peculiar and intrinsically different electrochemical responses. In particular, after the initial electrochemical activation, anatase TiO2 shows excellent rate capability and very stable long-term cycling performance with larger specific capacities, and thus a clearly superior response compared with the amorphous counterpart. To obtain deeper insight, the present materials are thoroughly characterized by scanning electron microscopy and ex situ X-ray diffraction, and the insertion of sodium ions in the TiO2 bulk phases is systematically modeled by density functional theory calculations. The present results may contribute to the development of more systematic screening approaches to identify suitable active materials for highly efficient sodium-based energy storage systems.
基金supported in part by the National Key R&D Program of China(Grant No.2021YFC2203100)CAS Young Interdisciplinary Innovation Team(Grant No.JCTD-2022-20)+11 种基金National Natural Science Foundation of China(Grant Nos.11875113,11961131007,12261131497,12003029,11833005,and 12192224)111 Project for“Observational and Theoretical Research on Dark Matter and Dark Energy”(Grant No.B23042)Fundamental Research Funds for Central UniversitiesCSC Innovation Talent FundsUSTC Fellowship for International CooperationUSTC Research Funds of the Double First-Class InitiativeCAS project for young scientists in basic research(Grant No.YSBR-006)Shanghai Municipality Science and Technology Commission(Grant No.KBH1512299)supported by the Disposizione del Presidente INFN n.24433 in INFN Sezione di Milanosupported in part by the U.S.Department of Energy,Office of High Energy Physics(Grant No.DE-SC0019470)the Foundational Questions Institute(Grant No.FQXi-MGB-1927)the use of the computing cluster LINDA&JUDY in the particle cosmology group at USTC。
文摘We discuss a novel window to probe the origin of our universe via the mass functions of primordial black holes(PBHs).The mass functions of PBHs are simply estimated using the conventional Press-Schechter formalism for two paradigms of cosmic origin,including inflationaryΛCDM and bounce cosmology.The standard inflationaryΛCDM model cannot generate an appreciable number of massive PBHs;however,non-trivial inflation models with blue-tilted power spectra at small scales and matter bounce cosmology provide formation mechanisms for heavy PBHs,which in turn,may seed the observed supermassive black holes(SMBHs).By fitting the SMBH mass functions at high redshift(z~6)derived from Sloan Digital Sky Survey(SDSS)and Canada-France High-z Quasar Survey(CFHQS)quasars,for two paradigms of cosmic origin,we derive constraints on the PBH density fraction fPBHat z~6 and the characteristic mass M_(★),with the prior assumption that all SMBHs stem from PBHs.We demonstrate that this newly proposed procedure,relying on astronomical measurements that utilize deep-field surveys of SMBHs at high redshift,can be used to constrain models of cosmic origin.Additionally,although not the main focus of this paper,we evolve the mass function from z~6 to z~0 through an assumption of 3×10^(8)-year Eddington’s accretion,and give a rough estimation of fPBHat z~0.
文摘The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscopy (SEM) was used to characterize the AA7075-T6 surface. Silicate can significantly reduce corrosion deterioration and the inhibition efficiency increases with the concentration of Na<sub>2</sub>SiO<sub>3</sub>. The corrosion inhibition mechanism involves the formation of a protective film over the alloy surface by adsorption of aluminosilicate anions from solution, as has also been suggested by others in literature.
基金supported in part by the National Key R&D Program of China(2021YFC2203100)CAS Young Interdisciplinary Innovation Team(JCTD-2022–20)+8 种基金the National Natural Science Foundation of China(11875113,11961131007,12261131497,12003029,11833005,and 12192224)the 111 Project for“Observational and Theoretical Research on Dark Matter and Dark Energy”(B23042)Fundamental Research Funds for Central Universitiesthe Disposizione del Presidente INFN n.24433 in INFN Sezione di MilanoChina Postdoctoral Science Foundation(2023TQ0355)CSC Innovation Talent FundsUSTC Fellowship for International CooperationUSTC Research Funds of the Double First-Class InitiativeCAS project for young scientists in basic research(YSBR-006)。
文摘From experime nts, the influe nee of the physical characteristics of different bin ary mixtures of solids on the spouting regime of a pyramidal square-based spouted bed reactor is assessed. The applied methodology permits a more precise evaluation of the effects of the tested variables (diameter, density, sphericity) on the response variables (minimum air flows at which spouting begins and at which to maintain spouting con ditions). The associated pressure drops along the bed of particles a nd the height of the formed fountai n are analysed in each case. During the initial stages of fluidisation, binary mixtures containing different density ratios show dead zones. Segregation becomes more evident at large-size and high-density ratios. The lack of sphericity was found to be the main reason leading to blocking, channelling, and start-up problems when system failures occur. Nevertheless, the extent of segregation in all cases decreases with increasing the spouting velocity. In addition, a computational fluid dynamic model based on the discrete element method, previously validated for a single solid bed, is proposed as a tool to predict and evaluate potential segregation phenomena in binary mixtures. This model reproduced with high accuracy the encountered segregation phenomena. Its use may help define the technical limts inherent in the pyramidal spouted bed reactor.
文摘An historical collection of more than one hundred samples of minerals and ore, used in the second half of the XVIII century was found and acquired during Munich Mineralientage 2014. The samples contained in numbered glass vials but lacking description, were prepared for teaching purpose about determinative mineralogy and ore recognition. All samples were analysed and identified. The identification effort drove the authors along a historical excursus about the didactics of mineralogy and the dry method analysis, nowadays neglected.
基金supported by a grant from the University of Torino(Ricerca Locale ex-60%,Bando 2015)
文摘It is well known that the safety and efficacy profile of an inhaled cortocosteroid(ICS) is influenced by the pharmacokinetic properties and associated pharmacodynamic effects of the drug. Freely circulating,protein unbound, and active ICS can cause systemic adverse effects. Therefore, a detailed investigation of drug-protein interaction could be of great interest to understand the pharmacokinetic behaviour of corticosteroids and for the design of new analogues with effective pharmacological properties. In the present work, the interaction between some corticosteroids and human serum albumin(HSA) has been studied by spectroscopic approaches. UV–Vis spectroscopy confirmed that all the investigated corticosteroids can bind to HSA forming a protein-drug complex. The intrinsic fluorescence of HSA was quenched by all the investigated drugs, which was rationalized in terms of a static quenching mechanism. The thermodynamic parameters determined by the Van't Hoff analysis of the binding constants(negative ΔH and ΔS values) clearly indicate thathydrogen bonds and van der Waals forces play a major role in the binding process between albumin and betamethasone, flunisolide and prednisolone, while hydrophobic forces may play a major role in stabilizing albumin-triamcinolone complexes.
文摘Highly mesoporous Zn O and g-Al2O3nanowires(NWs) are both synthesized by a hydrothermal method using commercially available porous anodic aluminium oxide(AAO) as template. AAO membrane acts as template for Zn O NWs and both as template and precursor for g-Al2O3 NWs. The formation of intermediate phases of porous Zn6Al2(OH)16CO3and boehmite(g-Al OOH) were observed, both occurring during the hydrothermal synthesis of porous Zn O and g-Al2O3 NWs, respectively, and disappearing after annealing at 600 C. This novel template-assisted hydrothermal process leads to the formation of porous Zn O and g-Al2O3NWs(specific surface area of 192 m2 g 1and 263 m2 g 1, respectively), showing pore sizes around 4 nm in diameter. The influence of the reaction parameters on the nanostructure morphology was also investigated. A Zn O seed layer, deposited on the AAO channels prior to the hydrothermal synthesis, leads to more compact Zn O nanowires(99 m2 g-1) protecting the AAO host from the chemical attack of the precursor solution.
文摘Quantum entanglement and squeezing have significantly improved phase estimation and imaging in interferometric settings beyond the classical limits.However,for a wide class of non-interferometric phase imaging/retrieval methods vastly used in the classical domain,e.g.,ptychography and diffractive imaging,a demonstration of quantum advantage is still missing.Here,we fill this gap by exploiting entanglement to enhance imaging of a pure phase object in a non-interferometric setting,only measuring the phase effect on the free-propagating field.This method,based on the so-called"transport of intensity equation",is quantitative since it provides the absolute value of the phase without prior knowledge of the object and operates in wide-field mode,so it does not need time-consuming raster scanning.Moreover,it does not require spatial and temporal coherence of the incident light.Besides a general improvement of the image quality at a fixed number of photons irradiated through the object,resulting in better discrimination of small details,we demonstrate a clear reduction of the uncertainty in the quantitative phase estimation.Although we provide an experimental demonstration of a specific scheme in the visible spectrum,this research also paves the way for applications at different wavelengths,e.g.,X-ray imaging,where reducing the photon dose is of utmost importance.
文摘Among spatial interpolation techniques,geostatistics is generally preferred because it takes into account the spatial correlation between neighbouring observations in order to predict attribute values at unsampled locations.A doline of approximately 15 000 m 2 at 1 900 m above sea level (North Italy) was selected as the study area to estimate a digital elevation model (DEM) using geostatistics,to provide a realistic distribution of the errors and to demonstrate whether using widely available secondary data provided more accurate estimates of soil pH than those obtained by univariate kriging.Elevation was measured at 467 randomly distributed points that were converted into a regular DEM using ordinary kriging.Further,110 pits were located using spatial simulated annealing (SSA) method.The interpolation techniques were multi-linear regression analysis (MLR),ordinary kriging (OK),regression kriging (RK),kriging with external drift (KED) and multi-collocated ordinary cokriging (CKmc).A cross-validation test was used to assess the prediction performances of the different algorithms and then evaluate which methods performed best.RK and KED yielded better results than the more complex CKmc and OK.The choice of the most appropriate interpolation method accounting for redundant auxiliary information was strongly conditioned by site specific situations.
文摘Sodium potassium niobate (KNN) (K0.5Na0.5NbO3) nanopowder with a mean particle size of about 20 - 30 nm was synthesized by wet chemical route using Nb2O5 as Nb source. A solution of K, Na and Nb cations was prepared, which resulted in a clear gel after the thermal treatment. Phase analysis, microstructure and morphology of the powder were determined by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The obtained gel was first analyzed by Thermo Gravimetric Analyzer (TGA) and Differential Scanning Calorimetry (DSC), and then calcined at different temperatures of 400℃, 500℃, 600℃ and 700℃. The X-Ray Diffraction (XRD) patterns of the synthesized samples confirmed the formation of the orthorhombic crystal phase of K0.5Na0.5NbO3 at 500?C, a temperature significantly lower than that typically used in the conventional mixed oxide route. The process developed in this work is convenient to realize the mass production of KNN nanopowders at low cost and suitable for various industrial applications.
文摘Electron beam melting(EBM) process is an additive manufacturing process largely used to produce complex metallic components made of high-performance materials for aerospace and medical applications.Especially,lattice structures made by Ti-6A1-4V have represented a hot topic for the industrial sectors because of having a great potential to combine lower weights and higher performances that can also be tailored by subsequent heat treatments.However,the little knowledge about the mechanical behaviour of the lattice structures is limiting their applications.The present work aims to provide a comprehensive review of the studies on the mechanical behaviour of the lattice structures made of Ti-6A1-4V.The main steps to produce an EBM part were considered as guidelines to review the literature on the lattice performance:(1) design,(2) process and(3) post-heat treatment.Thereafter,the correlation between the geometrical features of the lattice structure and their mechanical behaviour is discussed.In addition,the correlation among the mechanical performance of the lattice structures and the process precision,surface roughness and working temperature are also reviewed.An investigation on the studies about the properties of heat-treated lattice structure is also conducted.
基金financed by the European Union-Next Generation EU(National Sustainable Mobility Center CN00000023,Italian Ministry of University and Research Decree n.1033-17/06/2022,Spoke 11-Innovative Materials&Lightweighting)。
文摘Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms.
文摘In the present work, carbon nano/microparticles obtained by controlled pyrolysis of peanut (PS) and hazelnut (HS) shells are presented. These materials were characterized by Raman spectroscopy and field emissionscanning electron microscopy (FE-SEM). When added to cement paste, up to 1 wt%, these materials led to an increase of the cement matrix flexural strength and of toughness. Moreover, with respect to plain cement, the total increase in electromagnetic radiation shielding effect when adding 0.5 wt% of PS or HS in cement composites is much higher in comparison to the ones reported in the literature for CNTs used in the same content.
基金partially supported by theénergies du Futur Carnot Institute(Investissements d’Avenir-grant agreement No.ANR-11-CARN-030-01)the facilities of the Tek Li Cell platform funded by the Région Rhone-Alpes(ERDF:European Regional Development Fund)
文摘Free organic solvent ink containing graphite, carboxymethyl cellulose and microfibrillated cellulose as active material, dispersing and binder, respectively, has been formulated to produce flexible and eco- sustainable electrodes for lithium ion batteries. Content ratio of components and dispersion protocol were tailored in order to have theological properties suitable for a large and cheap manufacturing process as well as screen printing. The bio-sourced printed electrodes exhibit a high porosity value of 70% that limits the electrochemical performances. However, the calendering process enhances electrode performances by increasing the reversible capacity from 85 until 315 mAh/g and reducing porosity to an optimal value of 34%. Moreover the introduction of 2% w/w of monofluoro-ethylene carbonate in the electrolyte reduced their reversible capacity loss of 11% in the printed electrode.
基金from the Italian Flagship Project NANOMAX(Progetto Bandiera MIUR PNR 2011–2013).
文摘In many optical applications,there is an increasing need for dynamically tunable optical elements that are able to shape the wavefront of light‘on demand’.In this work,an elastomeric easy-to-fabricate optical element whose transmission functions can be reversibly phase configured by visible light is demonstrated.The light responsivity of proper azopolymers incorporated within an elastomeric matrix is exploited to induce a light-controlled graded refractive index(GRIN)distribution within the bulk compound.The induced refractive index distribution is continuous and conformal to the intensity profile of the illumination at moderate power.A 100mW doubled-frequency Nd:YAG Gaussian beam focused to a 650μm waist is shown to induce a maximum relative refractive index change of~0.4%in the elastomeric matrix,with an approximately parabolic profile.The restoring characteristics of the elastomeric matrix enable full recovery of the initial homogeneous refractive index distribution within a few seconds when the incident laser is switched off.As an exemplary application,the configurable GRIN element is used in a microscope-based imaging system for light control of the effective focal length.
文摘In this study,the mechanical properties of glass scaffolds manufactured by robocasting are investigated through micro computed tomography(/x-CT)based finite element modeling.The scaffolds are obtained by printing fibers along two perpendicular directions on parallel layers with a 90°tilting between two adjacent layers.A parametric study is first presented with the purpose to assess the effect of the major design parameters on the elastic and strength properties of the scaffold;the mechanical properties of the 3D printed scaffolds are eventually estimated by using the\i-CT data with the aim of assessing the effect of defects on the final geometry which are intrinsic in the manufacturing process.The macroscopic elastic modulus and strength of the scaffold are determined by simulating a uniaxial compressive test along the direction which is perpendicular to the layers of the printed fibers.An iterative approach has been used in order to determine the scaffold strength.A partial validation of the computational model has been obtained through comparison of the computed results with experimental values presented in[10]on a ceramic scaffold having the same geometry.All the results have been presented as non-dimensional values.The finite element analyses have shown which of the selected design parameters have the major effect on the stiffness and strength,being the porosity and fiber shifting between adjacent layers the most important ones.The analyses carried out on the basis of the/x-C7 data have shown elastic modulus and strength which are consistent with that found on ideal geometry at similar macroscopic porosity.
文摘The geographical location makes the port of Livorno one of the most important in Italy. The port, in fact, benefits of an extended network of roads and rails connecting it with the rest of Italy, and central and southern Europe as well. The history of Livorno and its port is inextricably linked to that of Pisa and Florence, and to the complexity of events that determined the political set-up of the region along several centuries. Looking at the new port plan of Livorno has made it necessary an extensive overview of the history of both the port, and of its planning. This analysis has allowed: to understand the reason for the different choices made in the past for the development of the port, highlighting, when necessary, the errors made; to identify the strengths and weaknesses of the existing port infrastructure; to identify the works needed to boost the port in the European context. The purpose of this paper is to provide a summary of the analysis performed for the implementation of the new Livorno port plan 2010 and show how the port planning in Italy is often conditioned by hundreds of centuries of history.