QTL Ici Mapping is freely available public software capable of building high-density linkage maps and mapping quantitative trait loci(QTL) in biparental populations. Eight functionalities are integrated in this softwa...QTL Ici Mapping is freely available public software capable of building high-density linkage maps and mapping quantitative trait loci(QTL) in biparental populations. Eight functionalities are integrated in this software package:(1) BIN: binning of redundant markers;(2) MAP: construction of linkage maps in biparental populations;(3) CMP: consensus map construction from multiple linkage maps sharing common markers;(4) SDL: mapping of segregation distortion loci;(5) BIP: mapping of additive, dominant, and digenic epistasis genes;(6) MET: QTL-by-environment interaction analysis;(7) CSL: mapping of additive and digenic epistasis genes with chromosome segment substitution lines; and(8) NAM: QTL mapping in NAM populations. Input files can be arranged in plain text, MS Excel 2003, or MS Excel 2007 formats. Output files have the same prefix name as the input but with different extensions. As examples, there are two output files in BIN, one for summarizing the identified bin groups and deleted markers in each bin, and the other for using the MAP functionality. Eight output files are generated by MAP, including summary of the completed linkage maps, Mendelian ratio test of individual markers, estimates of recombination frequencies, LOD scores, and genetic distances, and the input files for using the BIP, SDL,and MET functionalities. More than 30 output files are generated by BIP, including results at all scanning positions, identified QTL, permutation tests, and detection powers for up to six mapping methods. Three supplementary tools have also been developed to display completed genetic linkage maps, to estimate recombination frequency between two loci,and to perform analysis of variance for multi-environmental trials.展开更多
Synthetic hexaploid wheat (Triticum turgidum x Aegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, researc...Synthetic hexaploid wheat (Triticum turgidum x Aegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, research advances on the utilization of synthetic hexaploid wheat for wheat genetic improvement in China are reviewed. Over 200 synthetic hexaploid wheat (SHW) accessions from the International Maize and Wheat Improvement Centre (CIMMYT) were introduced into China since 1995. Four cultivars derived from these, Chuanmai 38, Chuanmai 42, Chuanmai 43 and Chuanmai 47, have been released in China. Of these, Chuanmai 42, with large kernels and resistance to stripe rust, had the highest average yield (〉 6 t/ha) among all cultivars over two years in Sichuan provincial yield trials, outyielding the commercial check cultivar Chuanmai 107 by 22,7%. Meanwhile, by either artificial chromosome doubling via colchicine treatment or spontaneous chromosome doubling via a union of unreduced gametes (2n) from T. turgidum-Ae, tauschii hybrids, new SHW lines were produced in China. Mitotic-like meiosis might be the cytological mechanism of spontaneous chromosome doubling. SHW lines with genes for spontaneous chromosome doubling may be useful for producing new SHW-alien amphidiploids and double haploid in wheat genetic improvement.展开更多
Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestic...Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat,and the genetic basis of agronomically important traits,which promote the breeding of elite varieties.In this review,we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield,end-use traits,flowering regulation,nutrient use efficiency,and biotic and abiotic stress responses,and various breeding strategies that contributed mainly by Chinese scientists.Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools,highthroughput phenotyping platforms,sequencing-based cloning strategies,high-efficiency genetic transformation systems,and speed-breeding facilities.These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process,ultimately contributing to more sustainable agriculture in China and throughout the world.展开更多
Adaptation to abiotic stresses like drought is an important acquirement of agriculturally relevant crops like maize. Development of enhanced drought tolerance in crops grown in climatic zones where drought is a very d...Adaptation to abiotic stresses like drought is an important acquirement of agriculturally relevant crops like maize. Development of enhanced drought tolerance in crops grown in climatic zones where drought is a very dominant stress factor therefore plays an essential role in plant breeding. Previous studies demonstrated that corn yield potential and enhanced stress tolerance are associated traits. In this study, we analyzed six different maize hybrids for their ability to deal with drought stress in a greenhouse experiment. We were able to combine data from morphophysiological parameters measured under well-watered conditions and under water restriction with metabolic data from different organs. These different organs possessed distinct metabolite compositions, with the leaf blade displaying the most considerable metabolome changes following water deficiency. Whilst we could show a general increase in metabolite levels under drought stress, including changes in amino acids, sugars, sugar alcohols, and intermediates of the TCA cycle, these changes were not differential between maize hybrids that had previously been designated based on field trial data as either drought-tolerant or susceptible. The fact that data described here resulted from a greenhouse experiment with rather different growth conditions compared to natural ones in the field may explain why tolerance groups could not be confirmed in this study. We were, however, able to highlight several metabolites that displayed conserved responses to drought as well as metabolites whose levels correlated well with certain physiological traits.展开更多
Plants with tolerance to low-phosphorus (P) can grow better under Iow-P conditions, and understanding of genetic mechanisms of Iow-P tolerance can not only facilitate identifying relevant genes but also help to deve...Plants with tolerance to low-phosphorus (P) can grow better under Iow-P conditions, and understanding of genetic mechanisms of Iow-P tolerance can not only facilitate identifying relevant genes but also help to develop Iow-P tolerant cultivars. QTL meta-analysis was conducted after a comprehensive review of the reports on O, TL mapping for Iow-P tolerance-related traits in maize. Meta-analysis pro- duced 23 consensus QTL (cQTL), 17 of which located in similar chromosome regions to those previously reported to influence root traits. Meanwhile, candidate gene mining yielded 215 genes, 22 of which located in the cQTL regions. These 22 genes are homologous to 14 functionally characterized genes that were found to participate in plant Iow-P tolerance, including genes encoding miR399s, Pi transporters and purple acid phosphatases. Four cQTL loci (cQTL2-L cQTLS-3, cQTL6-2, and cQTL10-2) may play important roles for low-P tolerance because each contains more original QTL and has better consistency across previous reports.展开更多
Genomic selection(GS) as a promising molecular breeding strategy has been widely implemented and evaluated for plant breeding, because it has remarkable superiority in enhancing genetic gain, reducing breeding time an...Genomic selection(GS) as a promising molecular breeding strategy has been widely implemented and evaluated for plant breeding, because it has remarkable superiority in enhancing genetic gain, reducing breeding time and expenditure, and accelerating the breeding process. In this study the factors affecting prediction accuracy(rMG) in GS were evaluated systematically, using six agronomic traits(plant height, ear height, ear length, ear diameter,grain yield per plant and hundred-kernel weight) evaluated in one natural and two biparental populations. The factors examined included marker density, population size, heritability,statistical model, population relationships and the ratio of population size between the training and testing sets, the last being revealed by resampling individuals in different proportions from a population. Prediction accuracy continuously increased as marker density and population size increased and was positively correlated with heritability; rMGshowed a slight gain when the training set increased to three times as large as the testing set. Low predictive performance between unrelated populations could be attributed to different allele frequencies, and predictive ability and prediction accuracy could be improved by including more related lines in the training population. Among the seven statistical models examined, including ridge regression best linear unbiased prediction(RR-BLUP), genomic BLUP(GBLUP), Bayes A, Bayes B, Bayes C, Bayesian least absolute shrinkage and selection operator(Bayesian LASSO), and reproducing kernel Hilbert space(RKHS), the RKHS and additive-dominance model(Add + Dom model) showed credible ability for capturing non-additive effects, particularly for complex traits with low heritability. Empirical evidence generated in this study for GS-relevant factors will help plant breeders to develop GS-assisted breeding strategies for more efficient development of varieties.展开更多
Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding com- munity from both the public and private sectors world-wide. Both approaches promise to rev...Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding com- munity from both the public and private sectors world-wide. Both approaches promise to revolutionize the prediction of complex traits, including growth, yield and adaptation to stress. Whereas high-throughput phenotyping may help to improve understanding of crop physiology, most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and compa- rable to genomic selection. Despite the fact that the two method- ological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome), they both consider the targeted traits (e.g. grain yield, growth, phenology, plant adaptation to stress) as a black box instead of dissectingthem as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology. This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield.展开更多
ζ (zeta)-carotene desaturase (ZDS) is a key enzyme for carotenoid biosynthesis, demonstrating high association with the yellow pigment (YP) content in wheat grain. Cloning ZDS gene and developing functional mar...ζ (zeta)-carotene desaturase (ZDS) is a key enzyme for carotenoid biosynthesis, demonstrating high association with the yellow pigment (YP) content in wheat grain. Cloning ZDS gene and developing functional markers are important for marker-assisted selection in wheat breeding. In the present study, the full-length DNA sequence of a ZDS gene on wheat chromosome 2A, designated TaZds-A1, was cloned, with 14 exons and 13 introns, and it has an open reading frame (ORF) of 1 707 bp, encoding 568 amino acid residues. A co-dominant functional marker, YP2A-1, was designed based on the polymorphisms of two alleles at the locus, TaZds-Ala and TaZds-Alb, yielding 183- and 179-bp fragments in TaZds-Ala and TaZds-Alb genotypes, respectively. A new QTL for YP content was detected on chromosome 2A, co-segregating with the functional marker YP2A-1 and TaZds-A1; it explained 11.3% of the phenotypic variance for YP content in a doubled haploid (DH) population from Zhongyou 9507/CA9632. Among 217 Chinese wheat cultivars and advanced lines, the average grain YP content of 126 cultivars with TaZds-Alb allele was 7.8% higher than that of 91 cultivars with TaZds- Ala allele.展开更多
Dumpling is one of the most important traditional wheat products in China. Dumpling quality is determined by the characteristics of both flour and filling, thus improvement of flour quality plays an important role in ...Dumpling is one of the most important traditional wheat products in China. Dumpling quality is determined by the characteristics of both flour and filling, thus improvement of flour quality plays an important role in improving dumpling quality. Thirty-nine Shandong winter wheat cultivars and advanced lines sown in Jinan, Shandong Province, China, in the 2008-2009 cropping season were used to determine genetic variation in Chinese raw dumpling quality and its relationship with flour characteristics. Large variations were observed for protein quality parameters in comparison with starch properties. Variation in color of the raw dumpling sheet was broader than that of sensory evaluation parameters of boiled dumpling among tested wheat cultivars, indicating the large influence of filling on dumpling color. Two cultivars, Jimai 20 and Zimai 12, were identified as possessing very good quality of raw dumpling, and 21 cultivars and advanced lines showed good quality. Protein and total starch content influenced the L* value of raw dumpling sheets. L" value at 0 and 2 h after sheeting were significantly influenced by protein content (r=-0.46 and -0.52, P〈0.01) and total starch content (r=0.55 and 0.57, P〈0.01), respectively. Flour yellow pigment was significantly corrected with a* (r=-0.67 and -0.62, P〈0.01) and b* (r=0.87 and 0.84, P〈0.01) value of raw dumpling sheets at 0 and 2 h after sheeting, respectively. Gluten strength parameters such as farinograph mixing tolerance index (MTI, r=-0.55, P〈0.01) were positively associated with appearance. MTI and energy were also significantly and positively correlated with elasticity of raw dumpling, with r=-0.54 and 0.47 (P〈0.01). The positive relationships between peak viscosity (r=0.51, P〈0.01), breakdown (r=0.54, P〈0.01), and smoothness of raw dumpling were also observed. Therefore, it is suggested that breeding programs should give more attention to gluten strength and starch pasting parameters for raw dumpling quality im展开更多
Starch is the major component of wheat flour and serves as a multifunctional ingredient in food industry. The objective of the present study was to investigate starch granule size distribution of Chinese wheat cultiva...Starch is the major component of wheat flour and serves as a multifunctional ingredient in food industry. The objective of the present study was to investigate starch granule size distribution of Chinese wheat cultivars, and to compare structure and functionality of starches in four leading cultivars Zhongmai 175, CA12092, Lunxuan 987, and Zhongyou 206. A wide variation in volume percentages of A- and B-type starch granules among genotypes was observed. Volume percentages of A- and B-type granules had ranges of 68.4–88.9% and 9.7–27.9% in the first cropping seasons, 74.1–90.1% and 7.2–25.3% in the second. Wheat cultivars with higher volume percentages of A- and B-type granules could serve as parents in breeding program for selecting high and low amylose wheat cultivars, respectively. In comparison with the B-type starch granules, the A-type granules starch showed difference in three aspects:(1) higher amount of ordered short-range structure and a lower relative crystallinity,(2) higher gelatinization onset(To) temperatures and enthalpies(ΔH), and lower gelatinization conclusion temperatures(Tc),(3) greater peak, though, and final viscosity, and lower breakdown viscosity and pasting temperature. It provides important information for breeders to develop potentially useful cultivars with particular functional properties of their starches suited to specific applications.展开更多
Grain yield in cereal crops is a complex trait controlled by multiple genes and influenced by developmental processes and environment. Here we report the effects of alleles Rht8 and Ppd-D1 a on plant height, time to h...Grain yield in cereal crops is a complex trait controlled by multiple genes and influenced by developmental processes and environment. Here we report the effects of alleles Rht8 and Ppd-D1 a on plant height, time to heading, and grain yield and its component traits. Association analysis and quantitative trait locus mapping using phenotypic data from 15 environments led to the following conclusions. First, both Rht8 and Ppd-D1 a reduce plant height. However, Ppd-D1 a but not Rht8 causes earlier heading.Second, both Rht8 and Ppd-D1 a promote grain yield and affect component traits. Their combined effects are substantially larger than those conferred by either allele alone.Third, promotion of grain yield by Rht8 and Ppd-D1 a is through increasing fertile spikelet number. We speculate that Rht8 and Ppd-D1 a act independently and additively in control of plant height, grain yield and yield component. Combination of the two alleles is desirable for adjusting plant height and enhancing grain yield and abiotic stress tolerance.展开更多
基金supported by the Natural Science Foundation of China (31271798)the Generation Challenge Program (GCP)HarvestP lus Challenge Program of CGIAR
文摘QTL Ici Mapping is freely available public software capable of building high-density linkage maps and mapping quantitative trait loci(QTL) in biparental populations. Eight functionalities are integrated in this software package:(1) BIN: binning of redundant markers;(2) MAP: construction of linkage maps in biparental populations;(3) CMP: consensus map construction from multiple linkage maps sharing common markers;(4) SDL: mapping of segregation distortion loci;(5) BIP: mapping of additive, dominant, and digenic epistasis genes;(6) MET: QTL-by-environment interaction analysis;(7) CSL: mapping of additive and digenic epistasis genes with chromosome segment substitution lines; and(8) NAM: QTL mapping in NAM populations. Input files can be arranged in plain text, MS Excel 2003, or MS Excel 2007 formats. Output files have the same prefix name as the input but with different extensions. As examples, there are two output files in BIN, one for summarizing the identified bin groups and deleted markers in each bin, and the other for using the MAP functionality. Eight output files are generated by MAP, including summary of the completed linkage maps, Mendelian ratio test of individual markers, estimates of recombination frequencies, LOD scores, and genetic distances, and the input files for using the BIP, SDL,and MET functionalities. More than 30 output files are generated by BIP, including results at all scanning positions, identified QTL, permutation tests, and detection powers for up to six mapping methods. Three supplementary tools have also been developed to display completed genetic linkage maps, to estimate recombination frequency between two loci,and to perform analysis of variance for multi-environmental trials.
基金supported by the National 863 pro-gram (No. 2006AA10Z1C6)the National Natural Science Foundation of China (No. 30771338 and 30700495)+1 种基金"100-Talent Program" of Chinese Academy of Sciencesthe Science and Technology Department of Sichuan Province
文摘Synthetic hexaploid wheat (Triticum turgidum x Aegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, research advances on the utilization of synthetic hexaploid wheat for wheat genetic improvement in China are reviewed. Over 200 synthetic hexaploid wheat (SHW) accessions from the International Maize and Wheat Improvement Centre (CIMMYT) were introduced into China since 1995. Four cultivars derived from these, Chuanmai 38, Chuanmai 42, Chuanmai 43 and Chuanmai 47, have been released in China. Of these, Chuanmai 42, with large kernels and resistance to stripe rust, had the highest average yield (〉 6 t/ha) among all cultivars over two years in Sichuan provincial yield trials, outyielding the commercial check cultivar Chuanmai 107 by 22,7%. Meanwhile, by either artificial chromosome doubling via colchicine treatment or spontaneous chromosome doubling via a union of unreduced gametes (2n) from T. turgidum-Ae, tauschii hybrids, new SHW lines were produced in China. Mitotic-like meiosis might be the cytological mechanism of spontaneous chromosome doubling. SHW lines with genes for spontaneous chromosome doubling may be useful for producing new SHW-alien amphidiploids and double haploid in wheat genetic improvement.
基金This work was supported by the National Natural Science Foundation of China(31788103,31970529,32125030,31921005,31961143013,32072660)the Key Research and Development Program of Ministry of Science and Technology of China(2021YFF1000200)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA24010202).
文摘Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat,and the genetic basis of agronomically important traits,which promote the breeding of elite varieties.In this review,we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield,end-use traits,flowering regulation,nutrient use efficiency,and biotic and abiotic stress responses,and various breeding strategies that contributed mainly by Chinese scientists.Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools,highthroughput phenotyping platforms,sequencing-based cloning strategies,high-efficiency genetic transformation systems,and speed-breeding facilities.These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process,ultimately contributing to more sustainable agriculture in China and throughout the world.
文摘Adaptation to abiotic stresses like drought is an important acquirement of agriculturally relevant crops like maize. Development of enhanced drought tolerance in crops grown in climatic zones where drought is a very dominant stress factor therefore plays an essential role in plant breeding. Previous studies demonstrated that corn yield potential and enhanced stress tolerance are associated traits. In this study, we analyzed six different maize hybrids for their ability to deal with drought stress in a greenhouse experiment. We were able to combine data from morphophysiological parameters measured under well-watered conditions and under water restriction with metabolic data from different organs. These different organs possessed distinct metabolite compositions, with the leaf blade displaying the most considerable metabolome changes following water deficiency. Whilst we could show a general increase in metabolite levels under drought stress, including changes in amino acids, sugars, sugar alcohols, and intermediates of the TCA cycle, these changes were not differential between maize hybrids that had previously been designated based on field trial data as either drought-tolerant or susceptible. The fact that data described here resulted from a greenhouse experiment with rather different growth conditions compared to natural ones in the field may explain why tolerance groups could not be confirmed in this study. We were, however, able to highlight several metabolites that displayed conserved responses to drought as well as metabolites whose levels correlated well with certain physiological traits.
基金supported by the National High‐Tech R&D Program (2012AA10A306) to W.X.L.National International Science and Technology Collaboration Program of China (2011DFA31140, 2012DFA32290) to Y.B.X.China Postdoctoral Science Foundation funded project to H.W.Z. (2012M520474)
文摘Plants with tolerance to low-phosphorus (P) can grow better under Iow-P conditions, and understanding of genetic mechanisms of Iow-P tolerance can not only facilitate identifying relevant genes but also help to develop Iow-P tolerant cultivars. QTL meta-analysis was conducted after a comprehensive review of the reports on O, TL mapping for Iow-P tolerance-related traits in maize. Meta-analysis pro- duced 23 consensus QTL (cQTL), 17 of which located in similar chromosome regions to those previously reported to influence root traits. Meanwhile, candidate gene mining yielded 215 genes, 22 of which located in the cQTL regions. These 22 genes are homologous to 14 functionally characterized genes that were found to participate in plant Iow-P tolerance, including genes encoding miR399s, Pi transporters and purple acid phosphatases. Four cQTL loci (cQTL2-L cQTLS-3, cQTL6-2, and cQTL10-2) may play important roles for low-P tolerance because each contains more original QTL and has better consistency across previous reports.
基金supported by the National Basic Research Program of China(2014 CB138206)National Key Research and Development Program of China(2016YFD0101803)+3 种基金the National Natural Science Foundation of China-CGIAR International Collaborative Program(31361140364)the Agricultural Science and Technology Innovation Program(ASTIP)of CAASFundamental Research Funds for Central Non-Profit of Institute of Crop Sciences,CAAS(1610092016124)supported by the Bill and Melinda Gates Foundation and the CGIAR Research Program MAIZE
文摘Genomic selection(GS) as a promising molecular breeding strategy has been widely implemented and evaluated for plant breeding, because it has remarkable superiority in enhancing genetic gain, reducing breeding time and expenditure, and accelerating the breeding process. In this study the factors affecting prediction accuracy(rMG) in GS were evaluated systematically, using six agronomic traits(plant height, ear height, ear length, ear diameter,grain yield per plant and hundred-kernel weight) evaluated in one natural and two biparental populations. The factors examined included marker density, population size, heritability,statistical model, population relationships and the ratio of population size between the training and testing sets, the last being revealed by resampling individuals in different proportions from a population. Prediction accuracy continuously increased as marker density and population size increased and was positively correlated with heritability; rMGshowed a slight gain when the training set increased to three times as large as the testing set. Low predictive performance between unrelated populations could be attributed to different allele frequencies, and predictive ability and prediction accuracy could be improved by including more related lines in the training population. Among the seven statistical models examined, including ridge regression best linear unbiased prediction(RR-BLUP), genomic BLUP(GBLUP), Bayes A, Bayes B, Bayes C, Bayesian least absolute shrinkage and selection operator(Bayesian LASSO), and reproducing kernel Hilbert space(RKHS), the RKHS and additive-dominance model(Add + Dom model) showed credible ability for capturing non-additive effects, particularly for complex traits with low heritability. Empirical evidence generated in this study for GS-relevant factors will help plant breeders to develop GS-assisted breeding strategies for more efficient development of varieties.
基金Participation of Jos Luis Araus and María Dolors Serret was supported by the Spanish Project AGL2010-20180 (subprogram AGR)the FP7 European Project OPTICHINA (266045)
文摘Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding com- munity from both the public and private sectors world-wide. Both approaches promise to revolutionize the prediction of complex traits, including growth, yield and adaptation to stress. Whereas high-throughput phenotyping may help to improve understanding of crop physiology, most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and compa- rable to genomic selection. Despite the fact that the two method- ological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome), they both consider the targeted traits (e.g. grain yield, growth, phenology, plant adaptation to stress) as a black box instead of dissectingthem as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology. This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield.
基金supported by the National Natural Science Foundation of China (30871522 and 30830072)the National Basic Research Program of China(2009CB118300)an Earmarked Fund for the Modern Agro-Industry Technology Research System, China (CARS-3-1-3)
文摘ζ (zeta)-carotene desaturase (ZDS) is a key enzyme for carotenoid biosynthesis, demonstrating high association with the yellow pigment (YP) content in wheat grain. Cloning ZDS gene and developing functional markers are important for marker-assisted selection in wheat breeding. In the present study, the full-length DNA sequence of a ZDS gene on wheat chromosome 2A, designated TaZds-A1, was cloned, with 14 exons and 13 introns, and it has an open reading frame (ORF) of 1 707 bp, encoding 568 amino acid residues. A co-dominant functional marker, YP2A-1, was designed based on the polymorphisms of two alleles at the locus, TaZds-Ala and TaZds-Alb, yielding 183- and 179-bp fragments in TaZds-Ala and TaZds-Alb genotypes, respectively. A new QTL for YP content was detected on chromosome 2A, co-segregating with the functional marker YP2A-1 and TaZds-A1; it explained 11.3% of the phenotypic variance for YP content in a doubled haploid (DH) population from Zhongyou 9507/CA9632. Among 217 Chinese wheat cultivars and advanced lines, the average grain YP content of 126 cultivars with TaZds-Alb allele was 7.8% higher than that of 91 cultivars with TaZds- Ala allele.
基金supported by an international collaboration project on wheat improvement from the Ministry of Agriculture of China (2006GR)
文摘Dumpling is one of the most important traditional wheat products in China. Dumpling quality is determined by the characteristics of both flour and filling, thus improvement of flour quality plays an important role in improving dumpling quality. Thirty-nine Shandong winter wheat cultivars and advanced lines sown in Jinan, Shandong Province, China, in the 2008-2009 cropping season were used to determine genetic variation in Chinese raw dumpling quality and its relationship with flour characteristics. Large variations were observed for protein quality parameters in comparison with starch properties. Variation in color of the raw dumpling sheet was broader than that of sensory evaluation parameters of boiled dumpling among tested wheat cultivars, indicating the large influence of filling on dumpling color. Two cultivars, Jimai 20 and Zimai 12, were identified as possessing very good quality of raw dumpling, and 21 cultivars and advanced lines showed good quality. Protein and total starch content influenced the L* value of raw dumpling sheets. L" value at 0 and 2 h after sheeting were significantly influenced by protein content (r=-0.46 and -0.52, P〈0.01) and total starch content (r=0.55 and 0.57, P〈0.01), respectively. Flour yellow pigment was significantly corrected with a* (r=-0.67 and -0.62, P〈0.01) and b* (r=0.87 and 0.84, P〈0.01) value of raw dumpling sheets at 0 and 2 h after sheeting, respectively. Gluten strength parameters such as farinograph mixing tolerance index (MTI, r=-0.55, P〈0.01) were positively associated with appearance. MTI and energy were also significantly and positively correlated with elasticity of raw dumpling, with r=-0.54 and 0.47 (P〈0.01). The positive relationships between peak viscosity (r=0.51, P〈0.01), breakdown (r=0.54, P〈0.01), and smoothness of raw dumpling were also observed. Therefore, it is suggested that breeding programs should give more attention to gluten strength and starch pasting parameters for raw dumpling quality im
基金financial support from the National Natural Science Foundation of China (31171547,31401651)
文摘Starch is the major component of wheat flour and serves as a multifunctional ingredient in food industry. The objective of the present study was to investigate starch granule size distribution of Chinese wheat cultivars, and to compare structure and functionality of starches in four leading cultivars Zhongmai 175, CA12092, Lunxuan 987, and Zhongyou 206. A wide variation in volume percentages of A- and B-type starch granules among genotypes was observed. Volume percentages of A- and B-type granules had ranges of 68.4–88.9% and 9.7–27.9% in the first cropping seasons, 74.1–90.1% and 7.2–25.3% in the second. Wheat cultivars with higher volume percentages of A- and B-type granules could serve as parents in breeding program for selecting high and low amylose wheat cultivars, respectively. In comparison with the B-type starch granules, the A-type granules starch showed difference in three aspects:(1) higher amount of ordered short-range structure and a lower relative crystallinity,(2) higher gelatinization onset(To) temperatures and enthalpies(ΔH), and lower gelatinization conclusion temperatures(Tc),(3) greater peak, though, and final viscosity, and lower breakdown viscosity and pasting temperature. It provides important information for breeders to develop potentially useful cultivars with particular functional properties of their starches suited to specific applications.
基金supported by the Ministry of Science and Technology of China (2017YFD0101000)Science and Technology Service Network Program (STS Program) of Chinese Academy of Sciences (KFJ-STS-ZDTP-024)National Natural Science Foundation of China (31371611)
文摘Grain yield in cereal crops is a complex trait controlled by multiple genes and influenced by developmental processes and environment. Here we report the effects of alleles Rht8 and Ppd-D1 a on plant height, time to heading, and grain yield and its component traits. Association analysis and quantitative trait locus mapping using phenotypic data from 15 environments led to the following conclusions. First, both Rht8 and Ppd-D1 a reduce plant height. However, Ppd-D1 a but not Rht8 causes earlier heading.Second, both Rht8 and Ppd-D1 a promote grain yield and affect component traits. Their combined effects are substantially larger than those conferred by either allele alone.Third, promotion of grain yield by Rht8 and Ppd-D1 a is through increasing fertile spikelet number. We speculate that Rht8 and Ppd-D1 a act independently and additively in control of plant height, grain yield and yield component. Combination of the two alleles is desirable for adjusting plant height and enhancing grain yield and abiotic stress tolerance.