针对灰狼优化(grey wolf optimization,GWO)算法在求解复杂高维优化问题时存在解精度低、易陷入局部最优等缺点,提出一种基于对数函数描述收敛因子的改进GWO算法。采用佳点集方法初始化种群以保证个体尽可能均匀地分布在搜索空间中;提...针对灰狼优化(grey wolf optimization,GWO)算法在求解复杂高维优化问题时存在解精度低、易陷入局部最优等缺点,提出一种基于对数函数描述收敛因子的改进GWO算法。采用佳点集方法初始化种群以保证个体尽可能均匀地分布在搜索空间中;提出一种基于对数函数描述的非线性收敛因子替代线性递减收敛因子,以协调算法的勘探和开采能力;对当前最优的3个个体执行改进的精英反向学习策略产生精英反向个体,以避免算法出现早熟收敛。研究结果表明改进算法具有较好的寻优性能。展开更多
文摘针对灰狼优化(grey wolf optimization,GWO)算法在求解复杂高维优化问题时存在解精度低、易陷入局部最优等缺点,提出一种基于对数函数描述收敛因子的改进GWO算法。采用佳点集方法初始化种群以保证个体尽可能均匀地分布在搜索空间中;提出一种基于对数函数描述的非线性收敛因子替代线性递减收敛因子,以协调算法的勘探和开采能力;对当前最优的3个个体执行改进的精英反向学习策略产生精英反向个体,以避免算法出现早熟收敛。研究结果表明改进算法具有较好的寻优性能。