期刊文献+
共找到805篇文章
< 1 2 41 >
每页显示 20 50 100
改进的RRT路径规划算法 被引量:47
1
作者 刘恩海 高文斌 +3 位作者 孔瑞平 刘贝野 董瑶 陈媛媛 《计算机工程与设计》 北大核心 2019年第8期2253-2258,共6页
对全局路径规划算法中的快速扩展随机树(RRT)算法进行深入的研究,针对基本RRT算法随机性强、搜索没有偏向性、得到的路径不一定为最优路径等缺点,提出一种改进的RRT优化算法,通过改进随机数生长方式的角度对原有算法思路进行改进,引导... 对全局路径规划算法中的快速扩展随机树(RRT)算法进行深入的研究,针对基本RRT算法随机性强、搜索没有偏向性、得到的路径不一定为最优路径等缺点,提出一种改进的RRT优化算法,通过改进随机数生长方式的角度对原有算法思路进行改进,引导随机数向着目标点方向生长,与此同时移动机器人可以根据周围环境信息及时做出调整,使随机树向更高质量生长。大量仿真结果表明,改进的RRT算法具有一定的可行性与有效性,能高效引导随机树朝目标点方向高质量地生长,规划的路径尽可能接近最优路径,有效缩短了路径规划时间。 展开更多
关键词 路径规划 RRT算法 目标偏向 路径优化 人工势场算法
下载PDF
基于多端行波时差的配电网故障定位方法 被引量:36
2
作者 李练兵 孙腾达 +3 位作者 曾四鸣 王磊 梁纪峰 郝育红 《电力系统保护与控制》 CSCD 北大核心 2022年第3期140-147,共8页
针对现有配电网故障定位方法存在实现复杂、可靠性不高的问题,提出一种基于多端行波时差的配电网故障定位方法。首先,分析故障行波传输特性,提出一种配电网故障状态表达式。根据多端行波时差和双端行波原理计算故障距离理论值。将理论... 针对现有配电网故障定位方法存在实现复杂、可靠性不高的问题,提出一种基于多端行波时差的配电网故障定位方法。首先,分析故障行波传输特性,提出一种配电网故障状态表达式。根据多端行波时差和双端行波原理计算故障距离理论值。将理论值代入故障状态表达式,搭建故障搜索矩阵和辅助矩阵,通过分析矩阵元素变化特征和数值状态定位故障线路。然后,根据三端行波法计算实际故障距离,消除行波波速不确定性造成的测距误差。最后,在Matlab/Simulink中建立配电网故障模型,验证在不同的故障类型和过渡电阻下定位方法的有效性。仿真结果表明定位方法可靠性好、准确度高。 展开更多
关键词 配电网 故障搜索矩阵 辅助矩阵 故障定位 行波测距
下载PDF
基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测 被引量:34
3
作者 黄凯 丁恒 +1 位作者 郭永芳 田海建 《电工技术学报》 EI CSCD 北大核心 2022年第15期3753-3766,共14页
锂离子电池剩余使用寿命(RUL)可以评估电池的可靠性,是电池健康管理的重要参数。准确地预测电池的RUL可以有效提高设备的安全性并降低工作风险。该文提出一种自适应数据预处理结合长短期记忆神经网络(LSTM)的RUL预测框架。选取容量作为... 锂离子电池剩余使用寿命(RUL)可以评估电池的可靠性,是电池健康管理的重要参数。准确地预测电池的RUL可以有效提高设备的安全性并降低工作风险。该文提出一种自适应数据预处理结合长短期记忆神经网络(LSTM)的RUL预测框架。选取容量作为健康因子,数据预处理阶段,首先使用自适应双指数模型平滑方法减少容量回升现象产生的负面影响,然后通过自适应白噪声完整集成经验模态分解(CEEMDAN)对数据进行降噪;模型构建阶段,利用预处理后的数据训练得到用于RUL预测的LSTM模型。以NASA和CALCE公开数据集为研究对象进行算法性能测试,实验结果表明,所提方法鲁棒性好,能够提供精确的RUL预测结果。 展开更多
关键词 锂电池 剩余使用寿命 自适应双指数模型平滑方法 自适应白噪声完整集成经验模态分解 长短期记忆神经网络
下载PDF
基于改进量子粒子群算法的光伏多峰MPPT研究 被引量:35
4
作者 李志军 张奕楠 +2 位作者 王丽娟 贾学岩 张雅雯 《太阳能学报》 EI CAS CSCD 北大核心 2021年第5期221-229,共9页
针对光伏阵列在局部遮阴时呈现的功率多峰特性,提出一种改进DCWQPSO算法与INC算法相结合的光伏最大功率追踪(MPPT)控制算法。该算法采用改进DCWQPSO算法进行最大功率点的全局搜索,然后利用INC算法对最大功率点进行局部跟踪,可避免动态... 针对光伏阵列在局部遮阴时呈现的功率多峰特性,提出一种改进DCWQPSO算法与INC算法相结合的光伏最大功率追踪(MPPT)控制算法。该算法采用改进DCWQPSO算法进行最大功率点的全局搜索,然后利用INC算法对最大功率点进行局部跟踪,可避免动态过程中功率的震荡。仿真结果表明:所提出的MPPT控制算法跟踪速度快、精度高、功率震荡小,可有效提升不确定环境下光伏发电系统的最大功率追踪效率和动态品质,并具有较好的鲁棒性。 展开更多
关键词 量子粒子群优化算法 惯性权重 光伏发电 多峰值MPPT 局部阴影
下载PDF
基于短时搁置端电压压降的快速锂离子电池健康状态预测 被引量:33
5
作者 郭永芳 黄凯 李志刚 《电工技术学报》 EI CSCD 北大核心 2019年第19期3968-3978,共11页
最大可用容量是衡量锂离子电池寿命状态的重要依据。在分析电池寿命实验和开路电压实验特性的基础上,提出一种能够表征锂离子电池最大可用容量的健康因子。由于该健康因子仅利用电池充电或放电至某电压后,搁置 10min 内端电压压降信息,... 最大可用容量是衡量锂离子电池寿命状态的重要依据。在分析电池寿命实验和开路电压实验特性的基础上,提出一种能够表征锂离子电池最大可用容量的健康因子。由于该健康因子仅利用电池充电或放电至某电压后,搁置 10min 内端电压压降信息,与传统方法相比,不限制电池的运行工况,能够快速预测电池健康状态,且获取健康因子时不需要对电池放电。论文进一步采用多种神经网络回归预测方法,建立健康因子与电池可用容量和寿命状态之间的关系,在对实验结果进行比较分析的基础上,提出一种加权混合神经网络模型。实验结果表明,所提出的健康因子能够用于表征电池寿命状态,且对实验工况有较强的鲁棒性,提出的加权混合神经网络模型能够获得高精度健康状态预测结果。 展开更多
关键词 锂离子电池 端电压压降 寿命状态 回归预测
下载PDF
WOA-VMD算法在轴承故障诊断中的应用 被引量:31
6
作者 张萍 张文海 +2 位作者 赵新贺 吴显腾 刘宁 《噪声与振动控制》 CSCD 北大核心 2021年第4期86-93,275,共9页
针对从滚动轴承振动信号中所提取的故障信息精度低的问题,提出一种基于鲸鱼优化算法(WOA)-变分模态分解(VMD)能量熵的特征提取方法,并采用改进鲸鱼优化算法(WOA)-支持向量机(SVM)进行故障诊断。首先,利用鲸鱼优化算法对变分模态分解模... 针对从滚动轴承振动信号中所提取的故障信息精度低的问题,提出一种基于鲸鱼优化算法(WOA)-变分模态分解(VMD)能量熵的特征提取方法,并采用改进鲸鱼优化算法(WOA)-支持向量机(SVM)进行故障诊断。首先,利用鲸鱼优化算法对变分模态分解模态个数K和惩罚参数α寻优,然后根据VMD处理信号得到若干模态分量,筛选后进一步提取能量熵作为特征向量。最后,针对WOA种群迭代机制易陷入局部极值等缺点,引入随机变异策略进行改进,根据改进WOA-SVM对轴承信号进行故障诊断。实验表明,该方法能够准确提取故障信息,提高轴承数据故障识别率,准确率高达99.2%。 展开更多
关键词 故障诊断 变分模态分解 能量熵 鲸鱼优化算法 支持向量机
下载PDF
基于一维卷积神经网络的低压万能式断路器附件故障诊断 被引量:30
7
作者 孙曙光 李勤 +2 位作者 杜太行 崔景瑞 王景芹 《电工技术学报》 EI CSCD 北大核心 2020年第12期2562-2573,共12页
由于低压万能式断路器分合闸附件的线圈回路采用交流供电方式,因此线圈回路合闸相位的随机性会导致同一运行状态下电流信号存在差异。利用传统的智能故障诊断方法可能会造成电流信号故障特征提取不准确,导致故障识别率降低。针对此问题... 由于低压万能式断路器分合闸附件的线圈回路采用交流供电方式,因此线圈回路合闸相位的随机性会导致同一运行状态下电流信号存在差异。利用传统的智能故障诊断方法可能会造成电流信号故障特征提取不准确,导致故障识别率降低。针对此问题,提出一种基于第一层宽卷积核自适应一维深度卷积神经网络(AW-1DCNN)的故障诊断算法。相较于传统智能诊断方法中存在人工特征提取与故障分类两个阶段,该方法将两者合二为一。首先,考虑到分合闸线圈电流信号的特点,采用一维卷积神经网络模型,并将模型的第一层卷积层的卷积核设为宽卷积核来扩大感受野区域;然后,利用特征提取层对电流信号进行自适应特征提取;最后,利用Softmax分类器输出故障诊断结果。实验结果表明,该算法不仅能对不同相位下同一故障进行有效识别,而且在泛化实验中仍能保持较高的故障识别率,能够有效地克服合闸相位变化对故障诊断结果的影响。 展开更多
关键词 万能式断路器 分合闸附件 线圈电流 一维深度卷积神经网络 故障诊断
下载PDF
排列熵—CEEMD分解下的新型小波阈值去噪谐波检测方法 被引量:29
8
作者 李志军 张鸿鹏 +1 位作者 王亚楠 李笑 《电机与控制学报》 EI CSCD 北大核心 2020年第12期120-129,共10页
基于补充经验模态分解(CEEMD)的谐波检测方法虽然能在一定程度上改善经验模态分解(EMD)的模态混叠问题,但由于非平稳信号本身存在噪声和在分解过程中需要额外增添辅助噪声,导致分解后的固有模态函数(IMFS)出现虚假分量和噪声残留,严重... 基于补充经验模态分解(CEEMD)的谐波检测方法虽然能在一定程度上改善经验模态分解(EMD)的模态混叠问题,但由于非平稳信号本身存在噪声和在分解过程中需要额外增添辅助噪声,导致分解后的固有模态函数(IMFS)出现虚假分量和噪声残留,严重影响了谐波特征信息的提取。本文在传统CEEMD基础之上,提出了一种基于排列熵(PE)算法的PE—CEEMD分解方法用以改善CEEMD分解中产生虚假分量的不足,并针对分解中噪声残留问题,采用了一种新型阈值函数下的小波阈值去噪(WTD)方法,对分解后得到的固有模态函数(IMFS)进行去噪处理,在对降噪处理过的IMFS中包含的各次谐波的特征信息进行提取。仿真实验表明,PE—CEEMD分解方法能够有效改善CEMMD中的虚假分量现象,而新型阈值函数下的WTD方法则能够有效消除残留噪声对IMFS特征信息提取带来的影响,提高了对谐波信号的检测精度,具有良好的抗噪性能。 展开更多
关键词 CEEMD EMD 排列熵 模态混叠 虚假分量 小波阈值去噪 谐波检测
下载PDF
最近邻优化的k-means聚类算法 被引量:29
9
作者 林涛 赵璨 《计算机科学》 CSCD 北大核心 2019年第S11期216-219,共4页
传统的k-means算法不论其数据样本的分布情况,将簇边缘位置、簇中心位置、离群点的数据样本全部按照最小距离原则,划分到离它最近的聚类中心所在簇中,没有考虑数据样本与其他簇之间的关系。如果数据样本与另一簇中心的距离接近于最小距... 传统的k-means算法不论其数据样本的分布情况,将簇边缘位置、簇中心位置、离群点的数据样本全部按照最小距离原则,划分到离它最近的聚类中心所在簇中,没有考虑数据样本与其他簇之间的关系。如果数据样本与另一簇中心的距离接近于最小距离,则此数据样本与两个簇的关系都很大,显然这样直接划分并不合理。针对此问题,文中提出了最近邻优化的k-means聚类算法。运用近邻的思想,将这些不“很属于”某簇的数据样本划分到其最近邻数据样本所在的簇中,实验结果表明,这种最近邻优化的k-means聚类算法有效地减少了算法的迭代次数,提高了算法的聚类准确度,得到了良好的聚类效果。 展开更多
关键词 K-MEANS 分布 关系 最近邻
下载PDF
复杂背景下基于深度学习的手势识别 被引量:28
10
作者 彭玉青 赵晓松 +2 位作者 陶慧芳 刘宪姿 李铁军 《机器人》 EI CSCD 北大核心 2019年第4期534-542,共9页
在人机交互领域,针对复杂背景下手势识别率低、算法鲁棒性差的问题,基于深度学习提出一种手势识别算法HGDR-Net (hand gesture detection and recognition network).该算法由手势检测和识别2部分构成.在手势检测阶段,为解决复杂背景下... 在人机交互领域,针对复杂背景下手势识别率低、算法鲁棒性差的问题,基于深度学习提出一种手势识别算法HGDR-Net (hand gesture detection and recognition network).该算法由手势检测和识别2部分构成.在手势检测阶段,为解决复杂背景下手势区域提取困难的问题,基于改进的YOLO (you only look once)算法进行手势检测.改进的YOLO算法结合了手势检测的特点,解决了原始YOLO对小物体检测效果差、定位准确度不高的问题.在识别阶段,利用卷积神经网络(CNN)进行识别,并针对手势区域的尺寸多样性引入了空间金字塔池化(SPP)来解决CNN的多尺度输入问题.最后在训练过程中联合线下和实时2种数据增强方法避免过拟合问题,提升HGDR-Net的泛化能力.在NUS-II和Marcel两个复杂背景的公共数据集上进行了验证实验,识别率分别达到98.65%和99.59%.结果表明本文算法能准确地从各种复杂背景中识别手势,相比于基于人工提取特征的传统算法和其他基于CNN的算法具有更高的识别准确率和更强的鲁棒性. 展开更多
关键词 手势识别 复杂背景 手势检测 深度学习 人机交互
原文传递
基于深度强化学习的移动机器人路径规划 被引量:27
11
作者 董瑶 葛莹莹 +2 位作者 郭鸿湧 董永峰 杨琛 《计算机工程与应用》 CSCD 北大核心 2019年第13期15-19,157,共6页
为解决传统的深度Q网络模型下机器人探索复杂未知环境时收敛速度慢的问题,提出了基于竞争网络结构的改进深度双Q网络方法(Improved Dueling Deep Double Q-Network,IDDDQN)。移动机器人通过改进的DDQN网络结构对其三个动作的值函数进行... 为解决传统的深度Q网络模型下机器人探索复杂未知环境时收敛速度慢的问题,提出了基于竞争网络结构的改进深度双Q网络方法(Improved Dueling Deep Double Q-Network,IDDDQN)。移动机器人通过改进的DDQN网络结构对其三个动作的值函数进行估计,并更新网络参数,通过训练网络得到相应的Q值。移动机器人采用玻尔兹曼分布与ε-greedy相结合的探索策略,选择一个最优动作,到达下一个观察。机器人将通过学习收集到的数据采用改进的重采样优选机制存储到缓存记忆单元中,并利用小批量数据训练网络。实验结果显示,与基本DDQN算法比,IDDDQN训练的机器人能够更快地适应未知环境,网络的收敛速度也得到提高,到达目标点的成功率增加了3倍多,在未知的复杂环境中可以更好地获取最优路径。 展开更多
关键词 深度双Q网络(DDQN) 竞争网络结构 重采样优选机制 玻尔兹曼分布 ε-greedy策略
下载PDF
基于信息反馈粒子群的高精度锂离子电池模型参数辨识 被引量:24
12
作者 黄凯 郭永芳 李志刚 《电工技术学报》 EI CSCD 北大核心 2019年第A01期378-387,共10页
锂离子电池模型参数精度是影响模型仿真电池静态和动态特性的一个重要因素。近年来,粒子群优化(PSO)算法常被应用于模型参数辨识中。然而PSO算法及其改进算法在迭代过程中存在此问题,即粒子位置的更新并未引起其局部最优位置以及种群全... 锂离子电池模型参数精度是影响模型仿真电池静态和动态特性的一个重要因素。近年来,粒子群优化(PSO)算法常被应用于模型参数辨识中。然而PSO算法及其改进算法在迭代过程中存在此问题,即粒子位置的更新并未引起其局部最优位置以及种群全局最优位置的更新,从而导致优化算法无法获得更优结果。针对此问题,提出一种基于信息反馈的粒子群(FPSO)算法,其能够根据粒子位置更新的反馈信息重新调整粒子位置,旨在促进粒子局部最优位置和全局最优位置持续更新以提高寻优精度。在利用常用基准函数对本文FPSO算法进行性能验证后,将其应用于锂离子电池模型参数辨识,实验结果表明,相比基于线性PSO、自适应权重PSO以及最小二乘法的模型参数辨识结果,本文提出的FPSO算法能够提高模型精度。 展开更多
关键词 锂离子电池 等效电路模型 模型参数辨识 信息反馈PSO
下载PDF
基于轴承温度的风机齿轮箱故障预警研究 被引量:24
13
作者 林涛 刘刚 +3 位作者 蔡睿琪 杨欣 张丽 廖文喆 《可再生能源》 CAS 北大核心 2018年第12期1877-1882,共6页
齿轮箱轴承作为能量传递的关键部件,对风机状态评估具有重要意义。文章针对齿轮箱故障,提出了基于改进的粒子群算法(APSO)优化的BP神经网络齿轮箱轴承温度预测模型。首先,基于主成分分析法,选取SCADA系统中影响齿轮箱轴承温度的参数,建... 齿轮箱轴承作为能量传递的关键部件,对风机状态评估具有重要意义。文章针对齿轮箱故障,提出了基于改进的粒子群算法(APSO)优化的BP神经网络齿轮箱轴承温度预测模型。首先,基于主成分分析法,选取SCADA系统中影响齿轮箱轴承温度的参数,建立正常状态下的齿轮箱轴承温度预测模型,通过对轴承温度残差值进行分析,得出风机故障告警和报警阈值,从而实现对齿轮箱故障的有效预警;最后,利用华北某风电场的数据进行实验仿真,对比分析粒子群(PSO)优化的BP神经网络预测模型和传统BP神经网络预测模型。结果表明,提出的预测方法拥有精度高、收敛速度快等优点。 展开更多
关键词 风电 齿轮箱 轴承温度 BP神经网络 粒子群算法 残差 故障预警
下载PDF
基于长短期记忆网络和滑动窗口的流数据异常检测方法 被引量:23
14
作者 仇媛 常相茂 +2 位作者 仇倩 彭程 苏善婷 《计算机应用》 CSCD 北大核心 2020年第5期1335-1339,共5页
针对目前流数据存在数量巨大、生成迅速和概念漂移的特点,提出了一种基于长短期记忆(LSTM)网络和滑动窗口的流数据异常检测方法。首先采用LSTM网络进行数据预测,之后计算预测值与实际值的差值。对于每个数据,选择合适的滑动窗口,将滑动... 针对目前流数据存在数量巨大、生成迅速和概念漂移的特点,提出了一种基于长短期记忆(LSTM)网络和滑动窗口的流数据异常检测方法。首先采用LSTM网络进行数据预测,之后计算预测值与实际值的差值。对于每个数据,选择合适的滑动窗口,将滑动窗口区间内的所有差值进行分布建模,再根据每个差值在当前分布的概率密度来计算数据异常可能性。LSTM网络不仅可以进行数据预测,还可以边预测边学习,实时更新调整网络,保证模型的有效性;而利用滑动窗口可以使得异常分数的分配更为合理。最后使用在真实数据基础上制造的模拟数据进行了实验。实验结果验证了所提方法在低噪声环境下比直接利用差值进行检测和异常数据分布建模法(ADM)方法的平均曲线下面积(AUC)值分别提高了0.187和0.05。 展开更多
关键词 流数据 异常检测 滑动窗口 长短期记忆网络 神经网络
下载PDF
融合残差注意力机制的UNet视盘分割 被引量:23
15
作者 侯向丹 赵一浩 +3 位作者 刘洪普 郭鸿湧 于习欣 丁梦园 《中国图象图形学报》 CSCD 北大核心 2020年第9期1915-1929,共15页
目的青光眼和病理性近视等会对人的视力造成不可逆的损害,早期的眼科疾病诊断能够大大降低发病率。由于眼底图像的复杂性,视盘分割很容易受到血管和病变等区域的影响,导致传统方法不能精确地分割出视盘。针对这一问题,提出了一种基于深... 目的青光眼和病理性近视等会对人的视力造成不可逆的损害,早期的眼科疾病诊断能够大大降低发病率。由于眼底图像的复杂性,视盘分割很容易受到血管和病变等区域的影响,导致传统方法不能精确地分割出视盘。针对这一问题,提出了一种基于深度学习的视盘分割方法RA-UNet(residual attention UNet),提高了视盘分割精度,实现了自动、端到端的分割。方法在原始UNet基础上进行了改进。使用融合注意力机制的ResNet34作为下采样层来增强图像特征提取能力,加载预训练权重,有助于解决训练样本少导致的过拟合问题。注意力机制可以引入全局上下文信息,增强有用特征并抑制无用特征响应。修改UNet的上采样层,降低模型参数量,帮助模型训练。对网络输出的分割图进行后处理,消除错误样本。同时,使用DiceLoss损失函数替代普通的交叉熵损失函数来优化网络参数。结果在4个数据集上分别与其他方法进行比较,在RIM-ONE(retinal image database for optic nerve evaluation)-R1数据集中,F分数和重叠率分别为0.9574和0.9182,比UNet分别提高了2.89%和5.17%;在RIM-ONE-R3数据集中,F分数和重叠率分别为0.969和0.9398,比UNet分别提高了1.5%和2.78%;在Drishti-GS1数据集中,F分数和重叠率分别为0.9662和0.9345,比UNet分别提高了1.65%和3.04%;在iChallenge-PM病理性近视挑战赛数据集中,F分数和重叠率分别为0.9424和0.8911,分别比UNet提高了3.59%和6.22%。同时还在RIM-ONE-R1和Drishti-GS1中进行了消融实验,验证了改进算法中各个模块均有助于提升视盘分割效果。结论提出的RA-UNet,提升了视盘分割精度,对有病变区域的图像也有良好的视盘分割性能,同时具有良好的泛化性能。 展开更多
关键词 青光眼 UNet 深度学习 视盘分割 预训练 注意力机制 DiceLoss
原文传递
基于Wavelet降噪和支持向量机的锂离子电池容量预测研究 被引量:21
16
作者 张婷婷 于明 +1 位作者 李宾 刘哲 《电工技术学报》 EI CSCD 北大核心 2020年第14期3126-3136,共11页
随着电池使用次数的增加,电池会出现老化问题。通过对电池的剩余容量进行预测,可以为设备系统中电池管理系统提供可靠的数据支撑。该文采用支持向量机(SVM)对锂离子电池剩余容量进行预测,并采用改进鸡群算法(ICSO)对SVM参数进行优化,从... 随着电池使用次数的增加,电池会出现老化问题。通过对电池的剩余容量进行预测,可以为设备系统中电池管理系统提供可靠的数据支撑。该文采用支持向量机(SVM)对锂离子电池剩余容量进行预测,并采用改进鸡群算法(ICSO)对SVM参数进行优化,从而建立了ICSO-SVM预测模型。为验证预测模型的可行性,首先,采用db5小波对B5和B6电池容量衰减数据进行多尺度分解,进而重构去噪后的信号;其次,对鸡群优化算法(CSO)进行了改进,提出了ICSO优化算法,经测试ICSO算法的收敛精度明显高于粒子群优化算法(PSO)和传统CSO算法;最后,采用两组实验对CSO-SVM模型和ICSO-SVM模型进行验证。通过分析发现,ICSO-SVM模型的平均偏差(AAD)值在1.5%以下,RMSE值在2%以下,R2均值为0.972 6。 展开更多
关键词 锂离子电池 支持向量机 优化算法 小波去噪 容量预测
下载PDF
基于SSA-PSO-ANFIS的短期风速预测研究 被引量:20
17
作者 林涛 刘航鹏 +2 位作者 赵参参 赵成林 马同宽 《太阳能学报》 EI CAS CSCD 北大核心 2021年第3期128-134,共7页
针对风速具有强非线性的特点,提出一种奇异谱分析和改进粒子群优化自适应模糊推理系统的短期风速预测模型。该方法采用奇异谱分析将原始序列分解为趋势和谐波分量,对各分量分别建立模糊神经网络模型,最后将各分量预测结果叠加得到预测... 针对风速具有强非线性的特点,提出一种奇异谱分析和改进粒子群优化自适应模糊推理系统的短期风速预测模型。该方法采用奇异谱分析将原始序列分解为趋势和谐波分量,对各分量分别建立模糊神经网络模型,最后将各分量预测结果叠加得到预测风速值。为提高预测精度,改用改进粒子群算法对自适应模糊推理系统的隶属度函数进行优化。以河北某风电场实测数据进行仿真并与传统的神经网络对比分析,结果表明将风速重构后分别预测再叠加降低了原始问题的复杂度,同时提高了预测精度,在不同时间间隔的风速序列预测中该模型显著降低了多步实时预测中的误差。 展开更多
关键词 风电 预测 粒子群算法 奇异谱分析 自适应模糊神经网络
下载PDF
锂离子电池健康状态估计方法研究综述 被引量:19
18
作者 胡晓亚 郭永芳 张若可 《电源学报》 CSCD 北大核心 2022年第1期126-133,共8页
电池管理系统是锂离子电池高效、安全运行的重要保障。电池的状态估计在电池管理系统中发挥着重要的作用。健康状态是锂离子电池状态估计的重要指标之一。通过对近几年国内外锂离子健康状态估计方法相关文献的整理,综述了锂离子电池健... 电池管理系统是锂离子电池高效、安全运行的重要保障。电池的状态估计在电池管理系统中发挥着重要的作用。健康状态是锂离子电池状态估计的重要指标之一。通过对近几年国内外锂离子健康状态估计方法相关文献的整理,综述了锂离子电池健康状态的定义和估计方法,并对现有的估计方法进行了分类和阐述。最后针对现有估计方法的不足,提出未来需要改进的方向。 展开更多
关键词 电池管理系统 锂离子电池 健康状态 估计方法
下载PDF
基于空间相关性的分布式光伏出力预测 被引量:20
19
作者 张家安 王琨玥 +4 位作者 陈建 郭凌旭 黄潇潇 范瑞卿 李志军 《电力建设》 北大核心 2020年第3期47-53,共7页
随着分布式光伏在配电网的渗透率不断上升,其出力波动将成为调度运行中不可忽略的一项不确定因素。基于同一地区光伏出力变化的相关性,提出一种基于空间相关性的分布式光伏出力预测方法。先对同一地区集中式、分布式光伏出力历史数据做... 随着分布式光伏在配电网的渗透率不断上升,其出力波动将成为调度运行中不可忽略的一项不确定因素。基于同一地区光伏出力变化的相关性,提出一种基于空间相关性的分布式光伏出力预测方法。先对同一地区集中式、分布式光伏出力历史数据做无遮归一化,以无遮系数表征光伏出力不确定性;再由K-means聚类方法对天气情况分类,建立基于Copula函数的各类天气工况下光伏出力的相关性模型;最后根据集中式光伏出力信息实现分布式光伏出力预测。以我国北部某城市光伏电站数据为算例,验证了该方法的有效性。 展开更多
关键词 分布式光伏 出力预测 空间相关性 COPULA
原文传递
基于深度学习的光学遥感图像飞机检测算法 被引量:20
20
作者 董永峰 仉长涛 +1 位作者 汪鹏 冯哲 《激光与光电子学进展》 CSCD 北大核心 2020年第4期94-100,共7页
光学遥感图像目标检测一直都是遥感领域研究的热点之一,但现有的检测方法对背景复杂且尺寸较小的目标检测准确率不高。针对以上问题,提出了一种以Mask-RCNN为基础框架的目标检测方法。该算法以ResNet50为特征提取网络并在此基础之上利... 光学遥感图像目标检测一直都是遥感领域研究的热点之一,但现有的检测方法对背景复杂且尺寸较小的目标检测准确率不高。针对以上问题,提出了一种以Mask-RCNN为基础框架的目标检测方法。该算法以ResNet50为特征提取网络并在此基础之上利用特征重用技术来更好地提取目标的语义特征,且针对不同类型的飞机尺寸比例不固定等特点,设计了一组更加合适的候选框尺度集合。实验结果证明,该方法与以往常用的检测算法相比在小物体检测上拥有更高的检测精度。 展开更多
关键词 图像处理 遥感图像 卷积神经网络 目标检测 Mask-RCNN算法 深度学习
原文传递
上一页 1 2 41 下一页 到第
使用帮助 返回顶部