针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法...针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法依据新样本与建模样本间的近似线性依靠(Approximate linear dependence,ALD)值和代表工业过程特性漂移幅度的阈值,选择有价值样本更新KPLS模型,并采用合成数据和Benchmark平台数据对该方法进行了仿真验证.针对基于离线历史数据建立的融合多传感器信息的磨机负荷参数集成模型难以适应磨矿过程时变特性的问题,提出了基于OLKPLS和在线自适应加权融合算法的在线集成建模方法,并通过实验球磨机的实际运行数据仿真验证了方法的有效性.展开更多
针对目前采用经验模态分解(empirical model decomposition,EMD)得到的系列子信号构建的磨机负荷参数软测量模型泛化性能差、难以进行清晰物理解释,以及EMD算法存在的模态混叠等问题,本文提出了基于选择性融合多尺度筒体振动频谱的建模...针对目前采用经验模态分解(empirical model decomposition,EMD)得到的系列子信号构建的磨机负荷参数软测量模型泛化性能差、难以进行清晰物理解释,以及EMD算法存在的模态混叠等问题,本文提出了基于选择性融合多尺度筒体振动频谱的建模方法.首先采用EMD、集合EMD(ensemble EMD,EEMD)、希尔伯特振动分解(Hilbert vibration decomposition,HVD)共3种多组分信号自适应分解算法获得磨机筒体振动多尺度子信号的集合,接着通过相关性分析剔除虚假无关部分,然后再将与原始信号相关性强的那部分多尺度子信号变换至频域,进而更有利于构建这些多尺度频谱与磨机负荷参数间的映射模型,最后通过改进分支定界选择性集成(improved branch and bound based selective ensemble,IBBSEN)算法建立软测量模型,实现对多源多尺度筒体振动频谱的最优选择性信息融合.基于实验球磨机运行数据的仿真实验表明所提方法在模型可解释性和泛化性能上均优于之前研究所提出方法.展开更多
文摘针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法依据新样本与建模样本间的近似线性依靠(Approximate linear dependence,ALD)值和代表工业过程特性漂移幅度的阈值,选择有价值样本更新KPLS模型,并采用合成数据和Benchmark平台数据对该方法进行了仿真验证.针对基于离线历史数据建立的融合多传感器信息的磨机负荷参数集成模型难以适应磨矿过程时变特性的问题,提出了基于OLKPLS和在线自适应加权融合算法的在线集成建模方法,并通过实验球磨机的实际运行数据仿真验证了方法的有效性.
文摘针对目前采用经验模态分解(empirical model decomposition,EMD)得到的系列子信号构建的磨机负荷参数软测量模型泛化性能差、难以进行清晰物理解释,以及EMD算法存在的模态混叠等问题,本文提出了基于选择性融合多尺度筒体振动频谱的建模方法.首先采用EMD、集合EMD(ensemble EMD,EEMD)、希尔伯特振动分解(Hilbert vibration decomposition,HVD)共3种多组分信号自适应分解算法获得磨机筒体振动多尺度子信号的集合,接着通过相关性分析剔除虚假无关部分,然后再将与原始信号相关性强的那部分多尺度子信号变换至频域,进而更有利于构建这些多尺度频谱与磨机负荷参数间的映射模型,最后通过改进分支定界选择性集成(improved branch and bound based selective ensemble,IBBSEN)算法建立软测量模型,实现对多源多尺度筒体振动频谱的最优选择性信息融合.基于实验球磨机运行数据的仿真实验表明所提方法在模型可解释性和泛化性能上均优于之前研究所提出方法.