采用常规神经网络进行冷水机组的故障检测与诊断,存在整体检测率低或完全无法检测的现象。为了提高冷水机组故障检测效率及诊断精度,本文提出了一种基于贝叶斯正则化的改进神经网络故障检测策略。由于BP神经网络存在泛化能力差的缺陷,...采用常规神经网络进行冷水机组的故障检测与诊断,存在整体检测率低或完全无法检测的现象。为了提高冷水机组故障检测效率及诊断精度,本文提出了一种基于贝叶斯正则化的改进神经网络故障检测策略。由于BP神经网络存在泛化能力差的缺陷,对神经网络进行贝叶斯正则化,从而提高模型的检测效率。贝叶斯算法通过限制神经网络权值,使网络反应更加光滑,模型更精确。通过利用ASHRAE Project提供的数据对FDD(fault detection and diagnosis)策略进行验证,检测率明显提高。展开更多
对基于神经网络方法的冷水机组故障监测效率取决于训练数据和被测数据的质量问题进行了研究。采用小波变换的方法剔除测量数据中的噪声,提高数据质量,从而提高冷水机组故障诊断效率。结果表明:采用小波变换使得各个水平故障的检测效率...对基于神经网络方法的冷水机组故障监测效率取决于训练数据和被测数据的质量问题进行了研究。采用小波变换的方法剔除测量数据中的噪声,提高数据质量,从而提高冷水机组故障诊断效率。结果表明:采用小波变换使得各个水平故障的检测效率均得到提高,尤其水平一的故障检测效率提高明显。故障水平一检测率的提高能够及时的辨别冷水机组的故障,从而采用措施防止故障进一步恶化,对降低能源消耗、提高系统的可靠性以及保证室内舒适性具有重要的意义。通过利用ASHRAE Project提供的数据对故障诊断与检测(fault detection and diagnosis)策略进行验证,检测率明显提高。展开更多
文摘采用常规神经网络进行冷水机组的故障检测与诊断,存在整体检测率低或完全无法检测的现象。为了提高冷水机组故障检测效率及诊断精度,本文提出了一种基于贝叶斯正则化的改进神经网络故障检测策略。由于BP神经网络存在泛化能力差的缺陷,对神经网络进行贝叶斯正则化,从而提高模型的检测效率。贝叶斯算法通过限制神经网络权值,使网络反应更加光滑,模型更精确。通过利用ASHRAE Project提供的数据对FDD(fault detection and diagnosis)策略进行验证,检测率明显提高。
文摘对基于神经网络方法的冷水机组故障监测效率取决于训练数据和被测数据的质量问题进行了研究。采用小波变换的方法剔除测量数据中的噪声,提高数据质量,从而提高冷水机组故障诊断效率。结果表明:采用小波变换使得各个水平故障的检测效率均得到提高,尤其水平一的故障检测效率提高明显。故障水平一检测率的提高能够及时的辨别冷水机组的故障,从而采用措施防止故障进一步恶化,对降低能源消耗、提高系统的可靠性以及保证室内舒适性具有重要的意义。通过利用ASHRAE Project提供的数据对故障诊断与检测(fault detection and diagnosis)策略进行验证,检测率明显提高。