采用开顶式生长室(open top chamber,OTC)模拟增温,同步监测了亚高山人工针叶林和天然针叶林表层土壤温、湿度的变化,以及模拟增温初期土壤转化酶、脲酶、过氧化氢酶和多酚氧化酶活性的变化.结果表明:在整个生长季节中,OTC使人工林和天...采用开顶式生长室(open top chamber,OTC)模拟增温,同步监测了亚高山人工针叶林和天然针叶林表层土壤温、湿度的变化,以及模拟增温初期土壤转化酶、脲酶、过氧化氢酶和多酚氧化酶活性的变化.结果表明:在整个生长季节中,OTC使人工林和天然林5cm土壤日平均温度分别增加0.61℃和0.56℃,10cm体积含水量分别下降4.10%和2.55%;模拟增温增加了土壤转化酶、脲酶、过氧化氢酶和多酚氧化酶活性.增温与林型的交互作用对土壤脲酶和过氧化氢酶活性有显著影响,而对转化酶和多酚氧化酶影响不显著.增温对过氧化氢酶活性的影响与季节变化相关.在各处理下,天然林土壤酶活性显著高于人工林.土壤酶活性季节动态与土壤温度有着较大相关性,而与土壤水分季节变化关系不明显.模拟增温易于增加土壤酶活性,但增温效应和林型、酶种类和季节变化有一定关系;亚高山针叶林土壤酶活性主要受控于土壤温度,而与土壤水分关系不大.展开更多
为探讨氮沉降在不同土壤水分状况下对林下土壤中参与土壤碳氮磷循环主要酶(β D 葡萄糖苷酶(β D glucosidase,βG)、过氧化物酶(Peroxidase,PER)、多酚氧化酶(Polyphenol oxidase,PPO)、β N 乙酰葡糖胺糖苷酶(β N acetylglucosaminid...为探讨氮沉降在不同土壤水分状况下对林下土壤中参与土壤碳氮磷循环主要酶(β D 葡萄糖苷酶(β D glucosidase,βG)、过氧化物酶(Peroxidase,PER)、多酚氧化酶(Polyphenol oxidase,PPO)、β N 乙酰葡糖胺糖苷酶(β N acetylglucosaminidase,NAG)和酸性磷酸酶(Acid phosphatase,AP))活性的动态影响,于2017年开展了盆栽模拟试验。试验以青杨扦插苗为植物材料,采用两因素(土壤水分和氮沉降)的随机区组设计,土壤水分含量分别为40%(W40)、60%(W60)和80%(W80)最大田间持水量,氮沉降水平分别为:0(N0)、4(N4)和8(N8)g N m^-2 a^-1。在土壤水分达到预定的水分含量后开始氮沉降处理,于氮沉降后的6 h、24 h和3、7、14、31、62 d采集土壤样品进行土壤酶活性的测定。结果表明:土壤含水量的降低显著降低了βG、NAG和PPO活性,且在W40时达到最低;对AP和PER活性无显著影响。氮沉降抑制了βG、NAG和AP活性,而且施氮浓度越大,抑制效应越强;对PER和PPO活性无显著影响。水氮交互作用对上述5种土壤酶活性均无显著影响。5种土壤酶活性在施氮7 d或14 d内变化较大,之后随处理时间的延长逐步平稳。两个月的实验期间,在不同水氮处理下,5种土壤酶活性基本都呈现升高 降低 升高 降低的双峰模式。该研究可为理解氮沉降对不同水分状况地区森林生态系统中土壤碳氮磷循环的生态学过程提供科学参考。展开更多
文摘采用开顶式生长室(open top chamber,OTC)模拟增温,同步监测了亚高山人工针叶林和天然针叶林表层土壤温、湿度的变化,以及模拟增温初期土壤转化酶、脲酶、过氧化氢酶和多酚氧化酶活性的变化.结果表明:在整个生长季节中,OTC使人工林和天然林5cm土壤日平均温度分别增加0.61℃和0.56℃,10cm体积含水量分别下降4.10%和2.55%;模拟增温增加了土壤转化酶、脲酶、过氧化氢酶和多酚氧化酶活性.增温与林型的交互作用对土壤脲酶和过氧化氢酶活性有显著影响,而对转化酶和多酚氧化酶影响不显著.增温对过氧化氢酶活性的影响与季节变化相关.在各处理下,天然林土壤酶活性显著高于人工林.土壤酶活性季节动态与土壤温度有着较大相关性,而与土壤水分季节变化关系不明显.模拟增温易于增加土壤酶活性,但增温效应和林型、酶种类和季节变化有一定关系;亚高山针叶林土壤酶活性主要受控于土壤温度,而与土壤水分关系不大.
文摘为探讨氮沉降在不同土壤水分状况下对林下土壤中参与土壤碳氮磷循环主要酶(β D 葡萄糖苷酶(β D glucosidase,βG)、过氧化物酶(Peroxidase,PER)、多酚氧化酶(Polyphenol oxidase,PPO)、β N 乙酰葡糖胺糖苷酶(β N acetylglucosaminidase,NAG)和酸性磷酸酶(Acid phosphatase,AP))活性的动态影响,于2017年开展了盆栽模拟试验。试验以青杨扦插苗为植物材料,采用两因素(土壤水分和氮沉降)的随机区组设计,土壤水分含量分别为40%(W40)、60%(W60)和80%(W80)最大田间持水量,氮沉降水平分别为:0(N0)、4(N4)和8(N8)g N m^-2 a^-1。在土壤水分达到预定的水分含量后开始氮沉降处理,于氮沉降后的6 h、24 h和3、7、14、31、62 d采集土壤样品进行土壤酶活性的测定。结果表明:土壤含水量的降低显著降低了βG、NAG和PPO活性,且在W40时达到最低;对AP和PER活性无显著影响。氮沉降抑制了βG、NAG和AP活性,而且施氮浓度越大,抑制效应越强;对PER和PPO活性无显著影响。水氮交互作用对上述5种土壤酶活性均无显著影响。5种土壤酶活性在施氮7 d或14 d内变化较大,之后随处理时间的延长逐步平稳。两个月的实验期间,在不同水氮处理下,5种土壤酶活性基本都呈现升高 降低 升高 降低的双峰模式。该研究可为理解氮沉降对不同水分状况地区森林生态系统中土壤碳氮磷循环的生态学过程提供科学参考。