Epithelial ovarian cancer(EOC) exhibits strong dependency on the tricarboxylic acid(TCA) cycle and oxidative phosphorylation to fuel anabolic process.Here,we show that malate dehydrogenase 2(MDH2),a key enzyme of the ...Epithelial ovarian cancer(EOC) exhibits strong dependency on the tricarboxylic acid(TCA) cycle and oxidative phosphorylation to fuel anabolic process.Here,we show that malate dehydrogenase 2(MDH2),a key enzyme of the TCA cycle,is palmitoylated at cysteine 138(C138) residue,resulting in increased activity of MDH2.We next identify that ZDHHC18 acts as a palmitoyltransferase of MDH2.Glutamine deprivation enhances MDH2 palmitoylation by increasing the binding between ZDHHC18 and MDH2.MDH2 silencing represses mitochondrial respiration as well as ovarian cancer cell proliferation both in vitro and in vivo.Intriguingly,re-expression of wild-type MDH2,but not its palmitoylation-deficient C138 S mutant,sustains mitochondrial respiration and restores the growth as well as clonogenic capability of ovarian cancer cells.Notably,MDH2 palmitoylation level is elevated in clinical cancer samples from patients with high-grade serous ovarian cancer.These observations suggest that MDH2 palmitoylation catalyzed by ZDHHC18 sustains mitochondrial respiration and promotes the malignancy of ovarian cancer,yielding possibilities of targeting ZDHHC18-mediated MDH2 palmitoylation in the treatment of EOC.展开更多
MITA is a central adaptor in innate immune responses to DNA viruses.The mechanisms responsible for recruitment of downstream kinase TBK1 and the transcription factor IRF3 to MITA remains enigmatic.Here we identified Z...MITA is a central adaptor in innate immune responses to DNA viruses.The mechanisms responsible for recruitment of downstream kinase TBK1 and the transcription factor IRF3 to MITA remains enigmatic.Here we identified ZDHHC11,a member of DHHC palmitoyl transferase family,as a positive regulator of DNA virus-triggered signaling.Overexpression of ZDHHC11 activated the IFN-βpromoter,while ZDHHC11-deficiency specifically impaired DNA virus HSV-1-induced transcription of downstream antiviral genes.Zdhhc11^(−/−)mice exhibited lower serum cytokine levels and higher lethality after HSV-1 infection.Mechanistically,ZDHHC11 facilitated the optimal recruitment of IRF3 to MITA.Our findings support an important role for ZDHHC11 in mediating MITA-dependent innate immune responses against DNA viruses.展开更多
基金supported by the National Key Research and Development Program of China (2020YFA0803402 and2019YFA0801703)the National Natural Science Foundation of China(81872240,81802745,81790250/81790253 and 91959202)Innovation Program of Shanghai Municipal Education Commission (N173606)。
文摘Epithelial ovarian cancer(EOC) exhibits strong dependency on the tricarboxylic acid(TCA) cycle and oxidative phosphorylation to fuel anabolic process.Here,we show that malate dehydrogenase 2(MDH2),a key enzyme of the TCA cycle,is palmitoylated at cysteine 138(C138) residue,resulting in increased activity of MDH2.We next identify that ZDHHC18 acts as a palmitoyltransferase of MDH2.Glutamine deprivation enhances MDH2 palmitoylation by increasing the binding between ZDHHC18 and MDH2.MDH2 silencing represses mitochondrial respiration as well as ovarian cancer cell proliferation both in vitro and in vivo.Intriguingly,re-expression of wild-type MDH2,but not its palmitoylation-deficient C138 S mutant,sustains mitochondrial respiration and restores the growth as well as clonogenic capability of ovarian cancer cells.Notably,MDH2 palmitoylation level is elevated in clinical cancer samples from patients with high-grade serous ovarian cancer.These observations suggest that MDH2 palmitoylation catalyzed by ZDHHC18 sustains mitochondrial respiration and promotes the malignancy of ovarian cancer,yielding possibilities of targeting ZDHHC18-mediated MDH2 palmitoylation in the treatment of EOC.
基金supported by grants from the National Key R&D Program of China(2017YFA0505800,2016YFA0502102)the National Natural Science Foundation of China(31630045,31521091,91429304 and 31671465)+1 种基金the Fundamental Research Funds for the Central Universities(2042017kf0205,2042017kf0242)Wuhan University Experiment Technology Project Funding.
文摘MITA is a central adaptor in innate immune responses to DNA viruses.The mechanisms responsible for recruitment of downstream kinase TBK1 and the transcription factor IRF3 to MITA remains enigmatic.Here we identified ZDHHC11,a member of DHHC palmitoyl transferase family,as a positive regulator of DNA virus-triggered signaling.Overexpression of ZDHHC11 activated the IFN-βpromoter,while ZDHHC11-deficiency specifically impaired DNA virus HSV-1-induced transcription of downstream antiviral genes.Zdhhc11^(−/−)mice exhibited lower serum cytokine levels and higher lethality after HSV-1 infection.Mechanistically,ZDHHC11 facilitated the optimal recruitment of IRF3 to MITA.Our findings support an important role for ZDHHC11 in mediating MITA-dependent innate immune responses against DNA viruses.