Previous studies done elsewhere have shown that Eucalyptus poles treated with chromated copper arsenate (CCA) can last over 30 years. Kenya is exceptional because in some eco-regions, the Eucalyptus poles’ life span ...Previous studies done elsewhere have shown that Eucalyptus poles treated with chromated copper arsenate (CCA) can last over 30 years. Kenya is exceptional because in some eco-regions, the Eucalyptus poles’ life span has greatly reduced to 5 years. The current study was designed to evaluate wood deteriorating agents of CCA-treated Eucalyptus poles and variability in four eco-regions of Kenya, namely, dryland, coastal, highland and humid lake. A total of 360 Eucalyptus pole samples were used for this experiment. Three CCA treatments were used to treat transmission poles at 20 kg/cm3 fencing posts samples at 6 kg/cm3, and a control group. Results indicated that termites and wood-decay fungi attacks caused wood deterioration in the four eco-regions. The proportion of power transmission pole degradation by wood deteriorating agents varied across eco-regions, between treatments and control and between time after treatments. Dryland eco-regions had the highest termite-related degradation (41.82%) while wood-decay fungi attack was highest in the highland eco-regions (9.20%). Samples treated with 6 kg/cm3 recorded the lowest level of wood deterioration, manifested by minimal superficial termite and wood-decay fungi attack. Samples treated with 20 kg/cm3 were characterized by moderate termite and wood-decay fungi attacks observed around the heartwood region, unlike sapwood. This study concluded that the deterioration of Eucalyptus CCA-treated poles is a question of climatic variability and hence, to increase the poles’ lifespan, CCA treatment should be tailored according to the characteristics of the ecoregion of use. Further investigations will inform the diversity of termites and decay-fungi across different eco-regions.展开更多
文摘Previous studies done elsewhere have shown that Eucalyptus poles treated with chromated copper arsenate (CCA) can last over 30 years. Kenya is exceptional because in some eco-regions, the Eucalyptus poles’ life span has greatly reduced to 5 years. The current study was designed to evaluate wood deteriorating agents of CCA-treated Eucalyptus poles and variability in four eco-regions of Kenya, namely, dryland, coastal, highland and humid lake. A total of 360 Eucalyptus pole samples were used for this experiment. Three CCA treatments were used to treat transmission poles at 20 kg/cm3 fencing posts samples at 6 kg/cm3, and a control group. Results indicated that termites and wood-decay fungi attacks caused wood deterioration in the four eco-regions. The proportion of power transmission pole degradation by wood deteriorating agents varied across eco-regions, between treatments and control and between time after treatments. Dryland eco-regions had the highest termite-related degradation (41.82%) while wood-decay fungi attack was highest in the highland eco-regions (9.20%). Samples treated with 6 kg/cm3 recorded the lowest level of wood deterioration, manifested by minimal superficial termite and wood-decay fungi attack. Samples treated with 20 kg/cm3 were characterized by moderate termite and wood-decay fungi attacks observed around the heartwood region, unlike sapwood. This study concluded that the deterioration of Eucalyptus CCA-treated poles is a question of climatic variability and hence, to increase the poles’ lifespan, CCA treatment should be tailored according to the characteristics of the ecoregion of use. Further investigations will inform the diversity of termites and decay-fungi across different eco-regions.