The Emeishan large igneous province(ELIP) in SW China is interpreted to be associated with an ancient mantle plume. Most of the constraints on the role of mantle plume in the generation of the Emeishan flood basalts w...The Emeishan large igneous province(ELIP) in SW China is interpreted to be associated with an ancient mantle plume. Most of the constraints on the role of mantle plume in the generation of the Emeishan flood basalts were provided by geological and geochemical methods, but the geophysical investigation is very limited. In order to better understand the deep structure and features of ELIP, we have studied the crustal velocity structure using the data acquired from the Lijiang-Panzhihua-Qingzhen wide-angle seismic profile. This profile crosses the three sub-zones of the ELIP(the inner, intermediate, and outer zones), divided based on the differential erosion and uplift of the Maokou limestone. The results provided by the active source seismic experiment demonstrate:(1) The average depth of the crystalline basement along the profile is about 2 km.(2) The middle crust in the Inner Zone is characterized by high-velocity anomalies, with the average velocity of 6.2-6.6 km/s, which is about 0.1– 0.2 km/s higher than the normal one. The velocity of the lower crust in the inner zone is 6.9-7.2 km/s, higher than those observed in the intermediate and outer zones(6.7-7.0 km/s). Relatively low velocity anomalies appear in the upper, middle and lower crusts near the junction of the inner zone and intermediate zone, probably due to the effect of the Xiaojiang fault(XJF).(3) The average velocity of the crust is comparatively low on both sides of XJF, especially on the east side, and the average velocity of the consolidated continental crust is also low there. This may suggest that the XJF extends at least down to 40 km deep, even beyond through the crust.(4) The depth to the Moho discontinuity decrease gradually from 47-53 km in the inner zone, via 42-50 km in the intermediate zone to 38-42 km in the outer zone. In the inner zone, the Moho uplifts locally and the(consolidated) crust is characterized by high-velocity anomalies, which are likely related to intensive magma intrusion and underplating associated with melting of plum展开更多
To investigate the geodynamic processes of Mesozoic large-scale mineralization in South China,we deployed a 350-km-long,wide-angle seismic reflection/refraction sounding profile between Yingshan in Hubei and Changshan...To investigate the geodynamic processes of Mesozoic large-scale mineralization in South China,we deployed a 350-km-long,wide-angle seismic reflection/refraction sounding profile between Yingshan in Hubei and Changshan in Zhejiang.This profile traverses the Cu-Au metallogenic belt in the middle and lower reaches of the Yangtze River(YMB),the Jiangnan W-polymetal metallogenic belt(JNMB),and the Qinhang Cu-polymetal metallogenic belt(QHMB).Our imaging results reveal various interesting velocity features along the profile.(1)The velocity structure is characterized by vertical layering and horizontal blocking;(2)the YMB is marked by high velocity and high V_(p)/V_(s) ratios in general with a significantly uplifted Moho interface and a thin crust of~31 km,and the lower crust contains high-velocity anomalies and has the characteristics of a crustmantle transition zone;(3)the JNMB is bounded by the Jiangnan fault and Jingdezhen-Huangshan fault and has low-velocity anomalies and low V_(p)/V_(s) ratios;and(4)the QHMB is characterized by high-velocity anomalies and high V_(p)/V_(s) ratios.The highvelocity anomalies in the YMB and QHMB represent relatively Cu-Au-rich mafic juvenile lower crust.The formation of this kind of crust is considered to be related to mantle-derived magma underplating or residues of Neoproterozoic oceanic crustal materials,and it also provided sources for large-scale Cu-Au mineralization in the Mesozoic.The JNMB has features similar to those of ancient crusts enriched in W-Sn,the partial melting of which played a leading role in the formation of the superlarge W deposits in this belt.Considering these results and other regional geological data,we propose that a large-scale oblique upwelling of the asthenosphere along the collisional belt of the Yangtze and Cathaysia blocks during the Mesozoic was the deep driving mechanism for the explosive mineralization of Cu,Au,and W in northeastern South China.The boundaries of the blocks or terrains and discontinuities of the lithosphere were the main channels f展开更多
The Zhangzhou basin is located at the middle section of the southeast coast seismic zone of the mainland of China. Using high-resolution refraction and wide-angle reflection/refraction seismic profiling of Zhangzhou b...The Zhangzhou basin is located at the middle section of the southeast coast seismic zone of the mainland of China. Using high-resolution refraction and wide-angle reflection/refraction seismic profiling of Zhangzhou basin and its vicinity, we have obtained the crustal geometric structure and velocity structure as well as the geometric configuration and structural relationship between the deep and shallow fractures. The results show that the crust in the region is divided into the upper crust and lower crust. The thickness of the upper crust is 16.5km- 18.8km, and that of the lower crust is 12.0km- 13.0km. The upper crust is further divided into an upper and lower section. In the lower section of the upper crust, there is a low-velocity layer with a velocity of about 6.00km/s; the depth of the top surface of the low-velocity layer is about 12.0km, and the thickness is about 5.0km. The lower crust is also divided into an upper and lower section. The depth of Moho is 29.0km- 31 .8km There are 6 normal faults in the shallow crust in this region, and most of them extend downwards to a depth of less than 4kin, the maximum depth is about 5km. Below the shallow normal faults, there is a conjectural high-dip angle deep fault zone. The fault zone extends downwards till the Moho and upwards into the low-velocity layer in lower section of the upper crust. The deep and shallow faults are not tectonically connected. The combination character of deep and shallow structures in the Zhangzhou basin indicates that the Jiulongjiang fault zone is a deep fault zone with distinct characteristics and a complex deep and shallow structure background. The acquisition of deep seismic exploration results obviously enhanced the reliability of explanation of deep-structural data and the exploration precision of the region. The combination of deep and shallow structures resulted in uniform explanation results. The delamination of the crust and the characteristic of the structures are more precise and explicit. We discovered for the first time展开更多
The marginal sea and back-arc basins in the Western Pacific Ocean have become the focus of tectonics due to their unique tectonic location.To understand the deep crustal structure in the back-arc region,we present a 5...The marginal sea and back-arc basins in the Western Pacific Ocean have become the focus of tectonics due to their unique tectonic location.To understand the deep crustal structure in the back-arc region,we present a 545-kmlong active-source ocean bottom seismometer(OBS)wide-angle reflection/refraction profile in the East China Sea.The P wave velocity model shows that the Moho depth rises significantly,from approximately 30 km in the East China Sea shelf to approximately 16 km in the axis of the Okinawa Trough.The lower crustal high-velocity zone(HVZ)in the southern Okinawa Trough,with V_(p) of 6.8-7.3 km/s,is a remarkable manifestation of the mantle material upwelling and accretion to the lower crust.This confirms that the lower crustal high-velocity mantle accretion is developed in the southern Okinawa Trough.During the process of back-arc extension,the crustal structure of the southern Okinawa Trough is completely invaded and penetrated by the upper mantle material in the axis region.In some areas of the southern central graben,the crust may has broken up and entered the initial stage of seafloor spreading.The discontinuous HVZs in the lower crust in the back-arc region also indicate the migration of spreading centers in the back-arc region since the Cenozoic.The asthenosphere material upwelling in the continent-ocean transition zone is constantly driving the lithosphere eastward for episodic extension,and is causing evident tectonic migration in the Western Pacific back-arc region.展开更多
We present the 1-D crustal velocity structure of the major tectonic blocks of the North China Craton(NCC)along 36°N based on synthetic seismogram modeling of long-range wide-angle reflection/refraction data.This ...We present the 1-D crustal velocity structure of the major tectonic blocks of the North China Craton(NCC)along 36°N based on synthetic seismogram modeling of long-range wide-angle reflection/refraction data.This profile extends from southwest Yan’an of central Shaanxi Province of China(109.47°E),across the southern Trans-North China Orogen(TNCO),the southwestern part of the North China Plain(NCP),the Luxi Uplift(LU)and the Sulu Orogen(SLO),ending at Qingdao City of Shandong Province,the eastern margin of China(120.12°E)along 36°N.We utilized reflectivity synthetic seismogram modeling of the active source data to develop 1-D velocity structures of the sub-blocks of the NCC.Our final model shows that the NCC crust varies remarkably among the tectonic units with different velocity structure features.Higher lower crustal velocity and Moho depth^42 km is a major feature of the crust beneath southern Ordos Blockt.The TNCO which is composed of Lyuliangshan Mountains(LM),Shanxi Graben(SXG)and Taihangshan Mountains(TM)shows dominant trans-orogenic features.The NCP shows a dominant thickening of sediments,sharp crust thinning with Moho depth^32 km and significant lower average velocity.The SLO and the LU shows a stratified crust,higher average velocity and crust thinning with Moho depth of^35 km.Our model shows the coincidence between the deep structure and the surface geology among all the tectonic sub-blocks of the NCC.展开更多
The relationship of the crustal contact between the Indian and Eurasian plates is a key issue in understanding crustal thickening and the subduction of the Indian lithosphere beneath the Qinghai-Tibetan Plateau. Acros...The relationship of the crustal contact between the Indian and Eurasian plates is a key issue in understanding crustal thickening and the subduction of the Indian lithosphere beneath the Qinghai-Tibetan Plateau. Across the middle of the Yarlung-Zangbo Suture(YZS), we deployed an ~450-km-long SN-trending wide-angle reflection/refraction profile to observe the P-wave velocity(vP) structure beneath the northern Himalaya and the southern plateau. Our results show that, 1. the high vP(~7.1 km/s) indicates that the Indian lower crust extends no more than 50 km north of the YZS. 2. The lower crust beneath the southern part of the plateau features an extremely low vP(<6.7 ± 0.2 km/s). 3. Compared with the velocities of several typical crustal lithologies in different temperature regimes, the low vPin the lower crust can be explained by felsic-intermediate granulite, which has prevented the lower crust from further eclogitization. We propose that the dip angle of the Indian lithospheric slab beneath the YZS is partly controlled by the composition of the lower crust of the plateau. In the northern middle YZS, the crust of the southern plateau is too thick and blocks the northward advancement of the Indian lower crust, resulting in the subduction of the Indian lithospheric slab into the upper mantle. The lower crust in western and eastern Lhasa is dominated by a mafic composition, and it was delaminated after eclogitization before the Miocene. The void zone generated by delamination favors the flattening and underthrusting of the Indian lower crust.展开更多
The 3-D crustal structure of P-wave velocity in East China is studied based on the data obtained by wide-angle seismic reflection and refraction surveys.The results suggest that a deep Moho disconti-nuity exists in th...The 3-D crustal structure of P-wave velocity in East China is studied based on the data obtained by wide-angle seismic reflection and refraction surveys.The results suggest that a deep Moho disconti-nuity exists in the western zone of the study region,being 35―48 thick.High-velocity structure zones exist in the upper crust shallower than 20 km beneath the Sulu and Dabie regions.The cause of high-velocity zones is attributable to high-pressure metamorphic(HPM) and ultra-high-pressure metamorphic(UHPM) terranes with high velocity and density exhuming up to the upper crust in the Sulu and Dabie orogenies.Anomalous zones of low velocity are in the lower crust,about 30 km beneath the Sulu and Dabie regions.The Moho discontinuity is as deep as 38 km beneath the Dabie region,deeper than those in the surrounding areas.The Moho discontinuity beneath the Sulu orogenic region is also a little deeper than those in its vicinity,being about 32 km.The deep Moho discontinuity zone implies that the low crustal velocity structure zone is in that region.The low-velocity characteristics in the lower crust are probably related to the remnant crustal root of the old mountains due to the orogeny in the Sulu and Dabie regions.The high-velocity anomalous zones in the upper crust and low-velocity anomalous zones in the lower crust beneath the Sulu region are all located northeast of the northern segment of the Tan-Lu fault.However,the high-and low-velocity anomalous zones beneath the Dabie region are located southwest of the southern segment of the Tan-Lu fault.Such a distribution of the velocity-anomalous zones looks to be attributable a left lateral slip motion along the Tan-Lu fault.The distribution pattern of the velocity-anomalous zones may show some evidence for the left strike-slip motion regime of the Tan-Lu fault.展开更多
基金supported by the National Basic Research Program of China(Grant No.2011CB808904)the National Natural Science Foundation of China(Grants Nos.41274070,41474068)
文摘The Emeishan large igneous province(ELIP) in SW China is interpreted to be associated with an ancient mantle plume. Most of the constraints on the role of mantle plume in the generation of the Emeishan flood basalts were provided by geological and geochemical methods, but the geophysical investigation is very limited. In order to better understand the deep structure and features of ELIP, we have studied the crustal velocity structure using the data acquired from the Lijiang-Panzhihua-Qingzhen wide-angle seismic profile. This profile crosses the three sub-zones of the ELIP(the inner, intermediate, and outer zones), divided based on the differential erosion and uplift of the Maokou limestone. The results provided by the active source seismic experiment demonstrate:(1) The average depth of the crystalline basement along the profile is about 2 km.(2) The middle crust in the Inner Zone is characterized by high-velocity anomalies, with the average velocity of 6.2-6.6 km/s, which is about 0.1– 0.2 km/s higher than the normal one. The velocity of the lower crust in the inner zone is 6.9-7.2 km/s, higher than those observed in the intermediate and outer zones(6.7-7.0 km/s). Relatively low velocity anomalies appear in the upper, middle and lower crusts near the junction of the inner zone and intermediate zone, probably due to the effect of the Xiaojiang fault(XJF).(3) The average velocity of the crust is comparatively low on both sides of XJF, especially on the east side, and the average velocity of the consolidated continental crust is also low there. This may suggest that the XJF extends at least down to 40 km deep, even beyond through the crust.(4) The depth to the Moho discontinuity decrease gradually from 47-53 km in the inner zone, via 42-50 km in the intermediate zone to 38-42 km in the outer zone. In the inner zone, the Moho uplifts locally and the(consolidated) crust is characterized by high-velocity anomalies, which are likely related to intensive magma intrusion and underplating associated with melting of plum
基金supported by the National Key R&D Program of China(Grant Nos.2019YFA0708602,2019YFA0708603,and 2016YFC0600201)the National Natural Science Foundation of China(Grant Nos.42130807,42074099)the China Geological Survey(Grant No.1212011220243)。
文摘To investigate the geodynamic processes of Mesozoic large-scale mineralization in South China,we deployed a 350-km-long,wide-angle seismic reflection/refraction sounding profile between Yingshan in Hubei and Changshan in Zhejiang.This profile traverses the Cu-Au metallogenic belt in the middle and lower reaches of the Yangtze River(YMB),the Jiangnan W-polymetal metallogenic belt(JNMB),and the Qinhang Cu-polymetal metallogenic belt(QHMB).Our imaging results reveal various interesting velocity features along the profile.(1)The velocity structure is characterized by vertical layering and horizontal blocking;(2)the YMB is marked by high velocity and high V_(p)/V_(s) ratios in general with a significantly uplifted Moho interface and a thin crust of~31 km,and the lower crust contains high-velocity anomalies and has the characteristics of a crustmantle transition zone;(3)the JNMB is bounded by the Jiangnan fault and Jingdezhen-Huangshan fault and has low-velocity anomalies and low V_(p)/V_(s) ratios;and(4)the QHMB is characterized by high-velocity anomalies and high V_(p)/V_(s) ratios.The highvelocity anomalies in the YMB and QHMB represent relatively Cu-Au-rich mafic juvenile lower crust.The formation of this kind of crust is considered to be related to mantle-derived magma underplating or residues of Neoproterozoic oceanic crustal materials,and it also provided sources for large-scale Cu-Au mineralization in the Mesozoic.The JNMB has features similar to those of ancient crusts enriched in W-Sn,the partial melting of which played a leading role in the formation of the superlarge W deposits in this belt.Considering these results and other regional geological data,we propose that a large-scale oblique upwelling of the asthenosphere along the collisional belt of the Yangtze and Cathaysia blocks during the Mesozoic was the deep driving mechanism for the explosive mineralization of Cu,Au,and W in northeastern South China.The boundaries of the blocks or terrains and discontinuities of the lithosphere were the main channels f
基金This research was funded by the 10th Five-Year KeyProject of Fujian Province ,entitled"Exploration of active fault and seismic risk evaluationin cities in Fujian province"
文摘The Zhangzhou basin is located at the middle section of the southeast coast seismic zone of the mainland of China. Using high-resolution refraction and wide-angle reflection/refraction seismic profiling of Zhangzhou basin and its vicinity, we have obtained the crustal geometric structure and velocity structure as well as the geometric configuration and structural relationship between the deep and shallow fractures. The results show that the crust in the region is divided into the upper crust and lower crust. The thickness of the upper crust is 16.5km- 18.8km, and that of the lower crust is 12.0km- 13.0km. The upper crust is further divided into an upper and lower section. In the lower section of the upper crust, there is a low-velocity layer with a velocity of about 6.00km/s; the depth of the top surface of the low-velocity layer is about 12.0km, and the thickness is about 5.0km. The lower crust is also divided into an upper and lower section. The depth of Moho is 29.0km- 31 .8km There are 6 normal faults in the shallow crust in this region, and most of them extend downwards to a depth of less than 4kin, the maximum depth is about 5km. Below the shallow normal faults, there is a conjectural high-dip angle deep fault zone. The fault zone extends downwards till the Moho and upwards into the low-velocity layer in lower section of the upper crust. The deep and shallow faults are not tectonically connected. The combination character of deep and shallow structures in the Zhangzhou basin indicates that the Jiulongjiang fault zone is a deep fault zone with distinct characteristics and a complex deep and shallow structure background. The acquisition of deep seismic exploration results obviously enhanced the reliability of explanation of deep-structural data and the exploration precision of the region. The combination of deep and shallow structures resulted in uniform explanation results. The delamination of the crust and the characteristic of the structures are more precise and explicit. We discovered for the first time
基金supported by the National Key Basic Research Program of China(Grant No.2013CB429701)the National Natural Science Foundation of China(Grant Nos.41606083,91958210,41606050 and 41210005)+1 种基金AoShan Technological Innovation Projects of National Laboratory for Marine Science and Technology(Qingdao)(2015ASKJ03)National Marine Geological Special Project(DD20190236,DD20190365,DD20190377)。
文摘The marginal sea and back-arc basins in the Western Pacific Ocean have become the focus of tectonics due to their unique tectonic location.To understand the deep crustal structure in the back-arc region,we present a 545-kmlong active-source ocean bottom seismometer(OBS)wide-angle reflection/refraction profile in the East China Sea.The P wave velocity model shows that the Moho depth rises significantly,from approximately 30 km in the East China Sea shelf to approximately 16 km in the axis of the Okinawa Trough.The lower crustal high-velocity zone(HVZ)in the southern Okinawa Trough,with V_(p) of 6.8-7.3 km/s,is a remarkable manifestation of the mantle material upwelling and accretion to the lower crust.This confirms that the lower crustal high-velocity mantle accretion is developed in the southern Okinawa Trough.During the process of back-arc extension,the crustal structure of the southern Okinawa Trough is completely invaded and penetrated by the upper mantle material in the axis region.In some areas of the southern central graben,the crust may has broken up and entered the initial stage of seafloor spreading.The discontinuous HVZs in the lower crust in the back-arc region also indicate the migration of spreading centers in the back-arc region since the Cenozoic.The asthenosphere material upwelling in the continent-ocean transition zone is constantly driving the lithosphere eastward for episodic extension,and is causing evident tectonic migration in the Western Pacific back-arc region.
基金This project sponsored by the National Natural Science Foudation of China(NSFC)(41574084 and 41774071)
文摘We present the 1-D crustal velocity structure of the major tectonic blocks of the North China Craton(NCC)along 36°N based on synthetic seismogram modeling of long-range wide-angle reflection/refraction data.This profile extends from southwest Yan’an of central Shaanxi Province of China(109.47°E),across the southern Trans-North China Orogen(TNCO),the southwestern part of the North China Plain(NCP),the Luxi Uplift(LU)and the Sulu Orogen(SLO),ending at Qingdao City of Shandong Province,the eastern margin of China(120.12°E)along 36°N.We utilized reflectivity synthetic seismogram modeling of the active source data to develop 1-D velocity structures of the sub-blocks of the NCC.Our final model shows that the NCC crust varies remarkably among the tectonic units with different velocity structure features.Higher lower crustal velocity and Moho depth^42 km is a major feature of the crust beneath southern Ordos Blockt.The TNCO which is composed of Lyuliangshan Mountains(LM),Shanxi Graben(SXG)and Taihangshan Mountains(TM)shows dominant trans-orogenic features.The NCP shows a dominant thickening of sediments,sharp crust thinning with Moho depth^32 km and significant lower average velocity.The SLO and the LU shows a stratified crust,higher average velocity and crust thinning with Moho depth of^35 km.Our model shows the coincidence between the deep structure and the surface geology among all the tectonic sub-blocks of the NCC.
基金supported by the National Key R&D Program of China (Grant No. 2016YFC0600301)the National Natural Science Foundation of China (Grant 42030308, 41974053, and 41888101)
文摘The relationship of the crustal contact between the Indian and Eurasian plates is a key issue in understanding crustal thickening and the subduction of the Indian lithosphere beneath the Qinghai-Tibetan Plateau. Across the middle of the Yarlung-Zangbo Suture(YZS), we deployed an ~450-km-long SN-trending wide-angle reflection/refraction profile to observe the P-wave velocity(vP) structure beneath the northern Himalaya and the southern plateau. Our results show that, 1. the high vP(~7.1 km/s) indicates that the Indian lower crust extends no more than 50 km north of the YZS. 2. The lower crust beneath the southern part of the plateau features an extremely low vP(<6.7 ± 0.2 km/s). 3. Compared with the velocities of several typical crustal lithologies in different temperature regimes, the low vPin the lower crust can be explained by felsic-intermediate granulite, which has prevented the lower crust from further eclogitization. We propose that the dip angle of the Indian lithospheric slab beneath the YZS is partly controlled by the composition of the lower crust of the plateau. In the northern middle YZS, the crust of the southern plateau is too thick and blocks the northward advancement of the Indian lower crust, resulting in the subduction of the Indian lithospheric slab into the upper mantle. The lower crust in western and eastern Lhasa is dominated by a mafic composition, and it was delaminated after eclogitization before the Miocene. The void zone generated by delamination favors the flattening and underthrusting of the Indian lower crust.
基金Supported partly by National Natural Science Foundation of China (Grant No.40674026)National Special Science Foundation of China (Grant No.200811037)
文摘The 3-D crustal structure of P-wave velocity in East China is studied based on the data obtained by wide-angle seismic reflection and refraction surveys.The results suggest that a deep Moho disconti-nuity exists in the western zone of the study region,being 35―48 thick.High-velocity structure zones exist in the upper crust shallower than 20 km beneath the Sulu and Dabie regions.The cause of high-velocity zones is attributable to high-pressure metamorphic(HPM) and ultra-high-pressure metamorphic(UHPM) terranes with high velocity and density exhuming up to the upper crust in the Sulu and Dabie orogenies.Anomalous zones of low velocity are in the lower crust,about 30 km beneath the Sulu and Dabie regions.The Moho discontinuity is as deep as 38 km beneath the Dabie region,deeper than those in the surrounding areas.The Moho discontinuity beneath the Sulu orogenic region is also a little deeper than those in its vicinity,being about 32 km.The deep Moho discontinuity zone implies that the low crustal velocity structure zone is in that region.The low-velocity characteristics in the lower crust are probably related to the remnant crustal root of the old mountains due to the orogeny in the Sulu and Dabie regions.The high-velocity anomalous zones in the upper crust and low-velocity anomalous zones in the lower crust beneath the Sulu region are all located northeast of the northern segment of the Tan-Lu fault.However,the high-and low-velocity anomalous zones beneath the Dabie region are located southwest of the southern segment of the Tan-Lu fault.Such a distribution of the velocity-anomalous zones looks to be attributable a left lateral slip motion along the Tan-Lu fault.The distribution pattern of the velocity-anomalous zones may show some evidence for the left strike-slip motion regime of the Tan-Lu fault.