In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m...In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.展开更多
为了解决传统微博用户影响力评价算法全面性和客观性差的问题,通过对微博用户影响力的定义和影响因素进行分析,鉴于微博社区网络与web页面网络的拓扑结构有着天然相似性的特点,提出了一种基于PageRank的用户影响力评价改进算法(Self and...为了解决传统微博用户影响力评价算法全面性和客观性差的问题,通过对微博用户影响力的定义和影响因素进行分析,鉴于微博社区网络与web页面网络的拓扑结构有着天然相似性的特点,提出了一种基于PageRank的用户影响力评价改进算法(Self and Followers User Influence Rank)SF-UIR.运用用户追随者数、用户是否认证、用户微博的传播能力三个指标对用户自身影响因素进行了量化,改善了PageRank值对用户影响力评价客观性差的问题.采用权重因子将追随者对其所关注用户的影响力贡献值进行科学的量化分配,解决了追随者影响力等值传递的弊端.与四类主流算法的对比实验结果表明:SFUIR算法同时考虑了基于用户行为的自身影响因素和基于拓扑结构的追随者影响因素,能够有效地解决追随者数量排名算法中的"僵尸粉"干扰问题,能比平均转发数算法更真实地反映用户的影响力高低,能有效规避K-覆盖度算法中未考虑微博用户自身行为特征和将所有的追随者都一视同仁的严重缺陷,能极大地改进PageRank算法单纯依赖追随者数量和追随者质量的不足,从而能够更加全面、更加客观地反映微博用户的影响力.展开更多
基金Project(61301095)supported by the National Natural Science Foundation of ChinaProject(QC2012C070)supported by Heilongjiang Provincial Natural Science Foundation for the Youth,ChinaProjects(HEUCF130807,HEUCFZ1129)supported by the Fundamental Research Funds for the Central Universities of China
文摘In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.
文摘为了解决传统微博用户影响力评价算法全面性和客观性差的问题,通过对微博用户影响力的定义和影响因素进行分析,鉴于微博社区网络与web页面网络的拓扑结构有着天然相似性的特点,提出了一种基于PageRank的用户影响力评价改进算法(Self and Followers User Influence Rank)SF-UIR.运用用户追随者数、用户是否认证、用户微博的传播能力三个指标对用户自身影响因素进行了量化,改善了PageRank值对用户影响力评价客观性差的问题.采用权重因子将追随者对其所关注用户的影响力贡献值进行科学的量化分配,解决了追随者影响力等值传递的弊端.与四类主流算法的对比实验结果表明:SFUIR算法同时考虑了基于用户行为的自身影响因素和基于拓扑结构的追随者影响因素,能够有效地解决追随者数量排名算法中的"僵尸粉"干扰问题,能比平均转发数算法更真实地反映用户的影响力高低,能有效规避K-覆盖度算法中未考虑微博用户自身行为特征和将所有的追随者都一视同仁的严重缺陷,能极大地改进PageRank算法单纯依赖追随者数量和追随者质量的不足,从而能够更加全面、更加客观地反映微博用户的影响力.